Synthesis 2017; 49(22): 4931-4941
DOI: 10.1055/s-0036-1588555
short review
© Georg Thieme Verlag Stuttgart · New York

Indium(III)-Catalyzed Transformations of Alkynes: Recent Advances in Carbo- and Heterocyclization Reactions

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden   Email: nicklas.selander@su.se
,
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden   Email: nicklas.selander@su.se
,
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden   Email: nicklas.selander@su.se
› Author Affiliations
Financial support from the Swedish Research Council (2012-2981) is gratefully acknowledged.
Further Information

Publication History

Received: 29 June 2017

Accepted after revision: 27 July 2017

Publication Date:
30 August 2017 (online)


Abstract

The use of a well-chosen catalyst is instrumental for the development of more efficient, economical and environmentally friendly reactions. In recent decades, indium-based catalysts have proven to be competitive and useful alternatives to transition-metal catalysts such as silver and gold. In this short review, we present some of the recent advances in indium(III)-catalyzed transformations of alkynes, with a focus on cyclization reactions.

1 Introduction

2 Terminal Alkynes as Nucleophiles

3 Nucleophilic Additions to Alkynes

4 Carbo- and Heterocyclization Reactions

4.1 Carbocyclization

4.2 Oxygen-Based Heterocycles

4.3 Nitrogen-Based Heterocycles

4.4 Sulfur-Based Heterocycles

5 Conclusion

 
  • References

    • 1a Chauhan KK. Frost CG. J. Chem. Soc., Perkin Trans. 1 2000; 3015
    • 1b Fringuelli F. Piermatti O. Pizzo F. Vaccaro L. Curr. Org. Chem. 2003; 7: 1661
    • 1c Frost C. Hartley J. Mini Rev. Org. Chem. 2004; 1: 1
    • 1d Nair V. Ros S. Jayan CN. Pillai BS. Tetrahedron 2004; 60: 1959
    • 1e Augé J. Lubin-Germain N. Uziel J. Synthesis 2007; 1739
    • 1f Ghosh R. Maiti S. J. Mol. Catal. A: Chem. 2007; 264: 1
    • 1g Yadav JS. Antony A. George J. Subba Reddy BV. Eur. J. Org. Chem. 2010; 591
    • 1h Singh MS. Raghuvanshi K. Tetrahedron 2012; 68: 8683
    • 1i Shen Z.-L. Wang S.-Y. Chok Y.-K. Xu Y.-H. Loh T.-P. Chem. Rev. 2013; 113: 271
    • 1j Cintas P. Synlett 1995; 1087
    • 1k Loh T.-P. Chua G.-L. Chem. Commun. 2006; 2739
    • 1l Zhang Z.-H. Synlett 2005; 711
    • 1m Leyva-Pérez A. Corma A. Angew. Chem. Int. Ed. 2012; 51: 614
    • 1n Schneider U. Kobayashi S. Acc. Chem. Res. 2012; 45: 1331
    • 2a Chemistry of Aluminium, Gallium, Indium and Thallium. Downs AJ. Springer; New York: 1993
    • 2b Compain G. Sikk L. Massi L. Gal J.-F. Duñach E. ChemPhysChem 2017; 18: 683
    • 3a Prajapati D. Laskar DD. Sandhu JS. Tetrahedron Lett. 2000; 41: 8639
    • 3b Loh T.-P. Chen S.-L. Org. Lett. 2002; 4: 3647
    • 3c Fu F. Teo Y.-C. Loh T.-P. Org. Lett. 2006; 8: 5999
    • 3d Hirashita T. Sato Y. Yamada D. Takahashi F. Araki S. Chem. Lett. 2011; 40: 506
  • 4 Takita R. Fukuta Y. Tsuji R. Ohshima T. Shibasaki M. Org. Lett. 2005; 7: 1363
    • 5a Fürstner A. Davies PW. Angew. Chem. Int. Ed. 2007; 46: 3410
    • 5b Corma A. Leyva-Pérez A. Sabater MJ. Chem. Rev. 2011; 111: 1657
    • 5c Michelet V. Noble Metal-Catalyzed Enyne Cycloisomerizations and Related Reactions. In Comprehensive Organic Synthesis II. Vol. 5. Knochel P. Molander GA. Elsevier; Amsterdam: 2014: 1483
  • 6 Fang G. Bi X. Chem. Soc. Rev. 2015; 44: 8124
    • 7a Jia-Jie W. Zhu Y. Zhan Z.-P. Asian J. Org. Chem. 2012; 1: 108
    • 7b Aguilar E. Sanz R. Fernández-Rodríguez MA. García-García P. Chem. Rev. 2016; 116: 8256
    • 7c Boyarskiy VP. Ryabukhin DS. Bokach NA. Vasilyev AV. Chem. Rev. 2016; 116: 5894
    • 8a Pérez I. Sestelo JP. Sarandeses LA. Org. Lett. 1999; 1: 1267
    • 8b Pérez I. Sestelo JP. Sarandeses LA. J. Am. Chem. Soc. 2001; 123: 4155
    • 8c Pena MA. Pérez I. Sestelo JP. Sarandeses LA. Chem. Commun. 2002; 2246
  • 9 Sakai N. Annaka K. Konakahara T. Org. Lett. 2004; 6: 1527
  • 10 Prajapati D. Sarma R. Bhuyan D. Hu W. Synlett 2011; 627
  • 11 Takita R. Yakura K. Ohshima T. Shibasaki M. J. Am. Chem. Soc. 2005; 127: 13760
  • 12 Harada S. Takita R. Ohshima T. Matsunaga S. Shibasaki M. Chem. Commun. 2007; 948
  • 13 Ji D.-M. Xu M.-H. Tetrahedron Lett. 2009; 50: 2952
    • 14a Zhang Y. Li P. Wang M. Wang L. J. Org. Chem. 2009; 74: 4364
    • 14b Kushwaha K. Malakar CC. Stas S. Lemière F. Abbaspour Tehrani K. RSC Adv. 2015; 5: 10139
    • 15a Nakamura M. Endo K. Nakamura E. J. Am. Chem. Soc. 2003; 125: 13002
    • 15b Nakamura M. Endo K. Nakamura E. Adv. Synth. Catal. 2005; 347: 1681
    • 15c Endo K. Hatakeyama T. Nakamura M. Nakamura E. J. Am. Chem. Soc. 2007; 129: 5264
  • 16 Tsuji H. Fujimoto T. Endo K. Nakamura M. Nakamura E. Org. Lett. 2008; 10: 1219
  • 17 Zhang J. Blazecka PG. Angell P. Lovdahl M. Curran TT. Tetrahedron 2005; 61: 7807
  • 18 Fujimoto T. Endo K. Tsuji H. Nakamura M. Nakamura E. J. Am. Chem. Soc. 2008; 130: 4492
  • 19 Holmbo SD. Godfrey NA. Hirner JJ. Pronin SV. J. Am. Chem. Soc. 2016; 138: 12316
  • 20 Tsuchimoto T. Maeda T. Shirakawa E. Kawakami Y. Chem. Commun. 2000; 1573
  • 21 Tsuchimoto T. Hatanaka K. Shirakawa E. Kawakami Y. Chem. Commun. 2003; 2454
  • 22 Tsuchimoto T. Kanbara M. Org. Lett. 2011; 13: 912
  • 23 Sarma R. Prajapati D. Chem. Commun. 2011; 47: 9525
  • 24 Sarma R. Rajesh N. Prajapati D. Chem. Commun. 2012; 48: 4014
  • 25 Rajesh N. Prajapati D. RSC Adv. 2014; 4: 32108
  • 26 Hack D. Blümel M. Chauhan P. Philipps AR. Enders D. Chem. Soc. Rev. 2015; 44: 6059
    • 27a Tsuji H. Yamagata K.-i. Itoh Y. Endo K. Nakamura M. Nakamura E. Angew. Chem. Int. Ed. 2007; 46: 8060
    • 27b Itoh Y. Tsuji H. Yamagata K.-i. Endo K. Tanaka I. Nakamura M. Nakamura E. J. Am. Chem. Soc. 2008; 130: 17161
    • 27c Tsuji H. Tanaka I. Endo K. Yamagata K.-i. Nakamura M. Nakamura E. Org. Lett. 2009; 11: 1845
    • 28a Takahashi K. Midori M. Kawano K. Ishihara J. Hatakeyama S. Angew. Chem. Int. Ed. 2008; 47: 6244
    • 28b Hatakeyama S. Pure Appl. Chem. 2009; 81: 217
    • 28c Urabe F. Nagashima S. Takahashi K. Ishihara J. Hatakeyama S. J. Org. Chem. 2013; 78: 3847
  • 29 Morikawa S. Yamazaki S. Furusaki Y. Amano N. Zenke K. Kakiuchi K. J. Org. Chem. 2006; 71: 3540
    • 30a Montaignac B. Vitale MR. Michelet V. Ratovelomanana-Vidal V. Org. Lett. 2010; 12: 2582
    • 30b Montaignac B. Vitale MR. Ratovelomanana-Vidal V. Michelet V. J. Org. Chem. 2010; 75: 8322
    • 30c Praveen C. Montaignac B. Vitale MR. Ratovelomanana-Vidal V. Michelet V. ChemCatChem 2013; 5: 2395
    • 31a Mamane V. Hannen P. Fürstner A. Chem. Eur. J. 2004; 10: 4556
    • 31b Fürstner A. Mamane V. Seidel G. Laurich D. Org. Synth. 2006; 83: 103
  • 32 Lim W. Rhee YH. Eur. J. Org. Chem. 2013; 460
    • 33a Tsuchimoto T. Matsubayashi H. Kaneko M. Shirakawa E. Kawakami Y. Angew. Chem. Int. Ed. 2005; 44: 1336
    • 33b Tsuchimoto T. Matsubayashi H. Kaneko M. Nagase Y. Miyamura T. Shirakawa E. J. Am. Chem. Soc. 2008; 130: 15823
    • 33c Nagase Y. Shirai H. Kaneko M. Shirakawa E. Tsuchimoto T. Org. Biomol. Chem. 2013; 11: 1456
  • 34 Ma J. Peng L. Zhang X. Zhang Z. Campbell M. Wang J. Chem. Asian J. 2010; 5: 2214
  • 35 Xu Y.-l. Pan Y.-m. Wu Q. Wang H.-s. Liu P.-z. J. Org. Chem. 2011; 76: 8472
  • 36 Yeh M.-CP. Liang C.-J. Chen H.-F. Weng Y.-T. Adv. Synth. Catal. 2015; 357: 3242
  • 37 Rajesh N. Prajapati D. Chem. Commun. 2015; 51: 3347
    • 38a Selvi T. Srinivasan K. Org. Biomol. Chem. 2013; 11: 2162
    • 38b Sakthivel K. Srinivasan K. Org. Biomol. Chem. 2014; 12: 269
    • 39a Qiu W.-W. Surendra K. Yin L. Corey EJ. Org. Lett. 2011; 13: 5893
    • 39b Surendra K. Qiu W. Corey EJ. J. Am. Chem. Soc. 2011; 133: 9724
    • 39c Surendra K. Corey EJ. J. Am. Chem. Soc. 2014; 136: 10918
  • 40 Gibeau AL. Snyder JK. Org. Lett. 2011; 13: 4280
  • 41 Kang JY. Connell BT. J. Org. Chem. 2011; 76: 2379
  • 42 Nakamura E. Tsuji H. Yamagata K.-i. Ueda Y. Synlett 2011; 1015
    • 43a Alonso-Marañón L. Martínez MM. Sarandeses LA. Sestelo JP. Org. Biomol. Chem. 2015; 13: 379
    • 43b Alonso-Marañón L. Sarandeses LA. Martínez MM. Sestelo JP. Org. Chem. Front. 2017; 4: 500
  • 44 Menkir MG. Lee S.-L. Org. Biomol. Chem. 2016; 14: 6508
  • 45 Pathipati SR. van der Werf A. Eriksson L. Selander N. Angew. Chem. Int. Ed. 2016; 55: 11863
    • 46a Sakai N. Annaka K. Konakahara T. Tetrahedron Lett. 2006; 47: 631
    • 46b Sakai N. Annaka K. Konakahara T. J. Org. Chem. 2006; 71: 3653
    • 46c Sakai N. Annaka K. Fujita A. Sato A. Konakahara T. J. Org. Chem. 2008; 73: 4160
    • 47a Nakamura I. Yamagishi U. Song D. Konta S. Yamamoto Y. Angew. Chem. Int. Ed. 2007; 46: 2284
    • 47b Nakamura I. Yamagishi U. Song D. Konta S. Yamamoto Y. Chem. Asian J. 2008; 3: 285
    • 48a Yanada R. Obika S. Kono H. Takemoto Y. Angew. Chem. Int. Ed. 2006; 45: 3822
    • 48b Obika S. Kono H. Yasui Y. Yanada R. Takemoto Y. J. Org. Chem. 2007; 72: 4462
  • 49 Yanada R. Hashimoto K. Tokizane R. Miwa Y. Minami H. Yanada K. Ishikura M. Takemoto Y. J. Org. Chem. 2008; 73: 5135
  • 50 Chanda T. Verma RK. Singh MS. Chem. Asian J. 2012; 7: 778
  • 51 Muthusamy S. Sivaguru M. Suresh E. Chem. Commun. 2015; 51: 707