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Abstract An efficient one-pot reaction has been developed for the
preparation of symmetrical disulfide derivatives directly from alkyl ha-
lides by reaction with a combination of sodium sulfide and carbon disul-
fide without requirement for any catalyst.
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Organic disulfides are an important class of compounds
that have applications in organic synthesis,1 biological
studies,2 drug delivery,3 and the polymer industry.4 Stabili-
zation of protein structure due to the formation of disulfide
bridges is common in biological systems5 and ligation
through the formation of disulfide linkage is often used in
the functionalization of proteins.6 Several bioactive mole-
cules contain disulfide bonds as active pharmacophores.7
Disulfide compounds are used as vulcanizing agents for
rubber.8

Several reports have appeared on the preparation of di-
sulfides by the oxidation of thiols using a variety of re-
agents,9 electrochemical oxidation10 and enzymatic reac-
tion.11 They have also been prepared from thiol acetates us-
ing clayfen under solvent-free conditions.12 Alkyl halides
could be considered as lower odor alternatives of thiols for
the preparation of disulfide derivatives. The preparation of
disulfides starting from alkyl halides using sodium sulfide
in the presence of a phase-transfer catalyst13 and hexachlo-
roethane, carbon tetrachloride or thiourea in PEG medium
has been reported.14 In addition, disulfides have been pre-
pared from alcohols,15 thiocyanates,16 epoxides,17 aziri-

dines,18 and S-alkylthiosulfates (Bunte salts).19 Despite their
synthetic utilities, the above mentioned approaches suffer
from shortcomings, which include the use of malodorous
thiols, requirement of special reaction conditions, hazard-
ous reagents, extended reaction times, high temperatures,
unsatisfactory yield and limited substrate scope. In the
search for efficient reaction conditions for the preparation
of symmetrical disulfides, we have explored the reaction of
alkyl halides with a combination of sodium sulfide
(Na2S·9H2O) and carbon disulfide (CS2) (Scheme 1). Recent-
ly, we have used the combination of Na2S·9H2O and CS2 as a
surrogate of hydrogen sulfide for the formation of glycosyl
thiol derivatives.20 During the preparation of glycosyl thiols
it was observed that variation of the ratio of Na2S·9H2O and
CS2 as well as the presence of substituents on the sugar ring
led to the formation of disulfide derivatives. In fact, sodium
sulfide has been used to react with alkyl halides to produce
symmetrical sulfides in the presence of a phase-transfer
catalyst.13 To our satisfaction, we found that the disulfide
derivatives were formed almost instantly by mixing the
substrates and the reagent system without formation of
symmetrical thioethers as by-products. In this communica-
tion, we present the fast, efficient preparation of symmetri-
cal disulfide derivatives directly from alkyl halides in excel-
lent yield.

Scheme 1  Synthesis of symmetrical disulfides from alkyl halides using 
a combination of sodium sulfide and carbon disulfide at room tempera-
ture
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In initial experiments, benzyl bromide was added to a
varied stoichiometric combination Na2S·9H2O and CS2 in
DMF at room temperature. It was observed that treatment
of benzyl bromide (1.0 mmol) with a combination of
Na2S·9H2O (1.0 mmol) and CS2 (1.0 mmol) in DMF at room
temperature instantaneously furnished dibenzyl disulfide 7
in 96% yield. Reduction of the quantity of either Na2S·9H2O
or CS2 resulted in the formation of product 7 in poor yield
due to the formation of thioether derivatives. However, in-
creasing the quantity of the reagents did not improve the
yield significantly. The reaction did not take place in the ab-
sence of either Na2S·9H2O or CS2 (Table 1). Notably, the re-
action does not require any metallic or phase-transfer cata-
lyst. Commonly used solvents such as CH2Cl2, THF, CH3CN,
DMF, DMSO, CH3OH, and H2O were screened for their suit-
ability to carry out the reaction. Excellent yields of 7 were
obtained by carrying out the reaction in DMF and DMSO
due to the high solubility of the reagents compared with
other solvents (Table 1). However, DMF was considered as
the preferred solvent due to the drawbacks associated with
DMSO such as high boiling point, unpleasant odor and
scope for formation of by-products. Although earlier
Na2S·9H2O-mediated thiolation reactions were carried out
in water or CH3OH at high temperature or in the presence of
a phase-transfer catalyst, under these conditions a satisfac-
tory yield of the product was not obtained; presumably due
to the loss of carbon disulfide at high temperature. Follow-
ing the optimization studies, a series of symmetrical disul-
fide derivatives was prepared in excellent yield (Table 2).23

The reaction conditions were also successfully applied for
the preparation of the O-glycosylated alkyl disulfide deriva-
tives. The functional groups present in the sugar moieties
were compatible with the reaction conditions. A variety of
alkyl halides were used for the preparation of disulfide de-

rivatives. The reaction is exceptionally fast and disulfide de-
rivatives were obtained exclusively within 2–5 min. The re-
action has been successfully applied for a scaled-up (20 g)
preparation of dibenzyl disulfide (7) in excellent yield (Ta-
ble 2). All products were unambiguously characterized by
spectroscopic analysis.24

A plausible mechanistic pathway is presented in
Scheme 2. Presumably, the reaction of Na2S·9H2O and CS2
generates a carbonotrithioate ion in situ, which displaces
the halide ion in the alkyl halide by nucleophilic substitu-
tion to furnish an alkyl thiolate ion after regenerating CS2.
Finally, oxidative condensation of alkyl thiolates results in
the formation of the symmetrical disulfide.

Scheme 2  Plausible mechanism for the formation of symmetrical di-
sulfides

In summary, an exceptionally fast reaction has been de-
veloped for the direct preparation of symmetrical disulfide
derivatives in excellent yield from alkyl and glycosylalkyl
halides by using a combination of Na2S·9H2O and CS2.23 This
clean, catalyst-free reaction is suitable for scale-up. By ap-
plying these reaction conditions, a diverse range of disul-
fide derivatives of non-commercial thiols can also be pre-
pared in excellent yield.
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(24) Spectroscopic data of novel products:
Di[2-O-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)ethyl]
Disulfide (11): Yield: 733 mg (90%); Colorless oil; 1H NMR (500
MHz, CDCl3): δ = 5.18 (t, J = 7.5 Hz, 2 H), 5.08 (t, J = 9.5 Hz, 2 H),
4.97 (m, 2 H), 4.55 (d, J = 9.0 Hz, 2 H), 4.26 (dd, J = 4.5, 8.0 Hz,
2 H), 4.14–3.95 (m, 4 H), 3.89–3.60 (m, 4 H), 2.96–2.71 (m, 4 H),
2.09, 2.06, 2.02, 2.00 (4 × s, 24 H); 13C NMR (125 MHz, CDCl3):
δ = 170.2 (2 C), 169.9 (2 C), 169.0 (2 C), 168.9 (2 C), 100.7 (2 C),
72.7 (2 C), 72.6 (2 C), 71.8 (2 C), 69.6 (4 C), 67.6 (2 C), 61.7 (2 C),
38.3 (2 C), 20.5 (8 C); HRMS (ESI): m/z [M+Na]+ calcd. for
C32H46O20S2: 837.1922; found: 837.1916.
Di[2-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)ethyl]
Disulfide (12): Yield: 700 mg (86%); Colorless oil; 1H NMR (500
MHz, CDCl3): δ = 5.39-5.31 (m, 2 H), 5.20–5.13 (m, 2 H), 5.05–
4.95 (m, 2 H), 4.50 (d, J = 8.0 Hz, 2 H), 4.19–4.09 (m, 4 H), 4.05–
3.89 (m, 2 H), 3.81–3.61 (m, 2 H), 2.91–2.71 (m, 4 H), 2.16, 2.07,
2.05, 1.98 (4 × s, 24 H); 13C NMR (125 MHz, CDCl3): δ = 170.1 (2
C), 170.0 (2 C), 169.9 (2 C), 169.2 (2 C), 101.4 (2 C), 70.8 (4 C),
70.7 (2 C), 68.7 (4 C), 66.9 (2 C), 61.1 (2 C), 20.7 (8 C); HRMS
(ESI): m/z [M+Na]+ calcd. for C32H46O20S2: 837.1922; found:
837.1917.
Di-[2-O-(2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl)ethyl]
Disulfide (13): Yield: 594 mg (85%); Colorless oil; 1H NMR (500
MHz, CDCl3): δ = 5.31–5.19 (m, 4 H), 5.05 (t, J = 9.5 Hz, 2 H), 4.76
(s, 2 H), 3.98–3.88 (m, 2 H), 3.85–3.69 (m, 4 H), 2.98–2.81 (m,
4 H), 2.15, 2.08, 1.98 (3 × s, 18 H), 1.22 (d, J = 6.0 Hz, 6 H);
13C NMR (125 MHz, CDCl3): δ = 169.9 (2 C), 169.8 (2 C), 169.7 (2
C), 97.5 (2 C), 70.9 (2 C), 70.6 (2 C), 69.7 (2 C), 69.0 (2 C), 66.6 (2
C), 66.3 (2 C), 38.2 (2 C), 20.8 (6 C), 17.4 (2 C); HRMS (ESI):
m/z [M+Na]+ calcd. for C28H42O16S2: 721.1812; found: 721.1806
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