Synthesis 2017; 49(11): 2535-2543
DOI: 10.1055/s-0036-1588727
paper
© Georg Thieme Verlag Stuttgart · New York

A Highly Efficient Copper-Catalyzed Three-Component Synthesis of 4-Aminoquinazolines

Lei Yang
Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. of China   Email: chendongyin@njmu.edu.cn
,
Honghua Luo
Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. of China   Email: chendongyin@njmu.edu.cn
,
Yan Sun
Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. of China   Email: chendongyin@njmu.edu.cn
,
Zhenyu Shi
Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. of China   Email: chendongyin@njmu.edu.cn
,
Kaidong Ni
Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. of China   Email: chendongyin@njmu.edu.cn
,
Fei Li
Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. of China   Email: chendongyin@njmu.edu.cn
,
Dongyin Chen*
Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. of China   Email: chendongyin@njmu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 21 December 2016

Accepted after revision: 02 February 2017

Publication Date:
23 February 2017 (online)


Abstract

A highly efficient copper-catalyzed one-pot protocol is developed for the synthesis of 4-aminoquinazolines from easily available 2-iodo- or 2-bromobenzimidamides, aldehydes, and sodium azide. This one-pot approach proceeds via consecutive copper-catalyzed SNAr substitution, reduction, cyclization, oxidation and tautomerization. The corresponding target products (26 examples) are obtained in 50–90% yield.

Supporting Information

 
  • References


    • For selected papers, see:
    • 1a Ciardiello F, Caputo R, Bianco R, Damiano V, Pomatico G, De Placido S, Bianco AR, Tortora G. Clin. Cancer Res. 2000; 6: 2053-2053
    • 1b Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, Campos D, Maoleekoonpiroj S, Smylie M, Martins R, van Kooten M, Dediu M, Findlay B, Tu D, Johnston D, Bezjak A, Clark G, Santabárbara P, Seymour L. N. Engl. J. Med. 2005; 353: 123-123
    • 1c Buzelin JM, Fonteyne E, Kontturi M, Witjes WP, Khan A. Br. J. Urol. 1997; 80: 597-597
    • 1d Packer M, Meller J, Gorlin R, Herman MV. Circulation 1979; 59: 531-531

      For selected papers, see:
    • 2a Okano M, Mito J, Maruyama Y, Masuda H, Niwa T, Nakagawa S, Nakamura Y, Matsuura A. Bioorg. Med. Chem. 2009; 17: 119-119
    • 2b Sestili I, Borioni A, Mustazza C, Rodomonte A, Turchetto L, Sbraccia M, Riitano D, Del Giudice MR. Eur. J. Med. Chem. 2004; 39: 1047-1047
    • 2c Blum CA, Zheng X, Brielmann H, Hodgetts KJ, Bakthavatchalam R, Chandrasekhar J, Krause JE, Cortright D, Matson D, Crandall M, Ngo CK, Fung L, Day M, Kershaw M, De Lombaert S, Chenard BL. Bioorg. Med. Chem. Lett. 2008; 18: 4573-4573
    • 2d Purandare AV, Gao A, Wan H, Somerville J, Burke C, Seachord C, Vaccaro W, Wityak J, Poss MA. Bioorg. Med. Chem. Lett. 2005; 15: 2669-2669
    • 2e van Muijlwijk-Koezen JE, Timmerman H, van der Goot H, Menge WM, Frijtag Von Drabbe Künzel J, de Groote M, IJzerman AP. J. Med. Chem. 2000; 43: 2227-2227
    • 2f Bouey-Bencteux E, Loison C, Pommery N, Houssin R, Hénichart JP. Anticancer Drug Des. 1998; 13: 893-893
    • 2g Zheng M, Zheng Y, Xue Y, Liu Y, An L, Zhang L, Ji M, Xue B, Wu X, Gong X, Gu N, Zhan X. Chem. Biol. Drug Des. 2013; 81: 399-399
    • 2h Nour A, Hayashi T, Chan M, Yao S, Tawatao RI, Crain B, Tsigelny IF, Kouznetsova VL, Ahmadiiveli A, Messer K, Pu M, Corr M, Carson DA, Cottam HB. Bioorg. Med. Chem. Lett. 2014; 24: 4931-4931

      For selected papers, see:
    • 3a Marvania B, Lee PC, Chaniyara R, Dong H, Suman S, Kakadiya R, Chou TC, Lee TC, Shah A, Su TL. Bioorg. Med. Chem. 2011; 19: 1987-1987
    • 3b Ahmad OK, Hill MD, Movassaghi M. J. Org. Chem. 2009; 74: 8460-8460
    • 3c Connolly DJ, Cusack D, O’Sullivan TP, Guiry PJ. Tetrahedron 2005; 61: 10153-10153
    • 3d Shreder KR, Wong MS, Nomanbhoy T, Leventhal PS, Fuller SR. Org. Lett. 2004; 6: 3715-3715
    • 3e Leonard NJ, Curtin DY. J. Org. Chem. 1946; 11: 349-349
    • 3f Lange NA, Sheibley FE. J. Am. Chem. Soc. 1931; 53: 3867-3867
    • 4a Yadav MR, Grande F, Chouhan BS, Naik PP, Giridhar R, Garofalo A, Neamati N. Eur. J. Med. Chem. 2012; 48: 231-231
    • 4b Itoh T, Mase T. Tetrahedron Lett. 2005; 46: 3573-3573

      For selected papers, see:
    • 5a Loidreau Y, Besson T. Tetrahedron 2011; 67: 4852-4852
    • 5b Heravi MM, Sadjadi S, Haj NM, Oskooie HA, Bamoharram FF. Synth. Commun. 2010; 40: 861-861
    • 5c Zhang J, Han Y, Han F, Chen Z, Weng L, Zhou X. Inorg. Chem. 2008; 47: 5552-5552
    • 5d Rad-Moghadam K, Samavi L. J. Heterocycl. Chem. 2006; 43: 913-913
    • 5e Seijas JA, Vázquez-Tato MP, Martínez MM. Tetrahedron Lett. 2000; 41: 2215-2215
    • 5f Taylor EC, Borror AL. J. Org. Chem. 1961; 26: 589-589
    • 5g Taylor EC, Knopf RJ, Borror AL. J. Am. Chem. Soc. 1960; 82: 3152-3152
    • 6a Yang X, Liu H, Fu H, Qiao R, Jiang Y, Zhao Y. Synlett 2010; 101-101
    • 6b Cargill MR, Linton KE, Sandford G, Yufit DS, Howard JA. K. Tetrahedron 2010; 66: 2356-2356
    • 6c Yan S, Dong Y, Peng Q, Fan Y, Zhang J, Lin J. RSC Adv. 2013; 3: 5563-5563
    • 6d Feng J, Wu X. Org. Biomol. Chem. 2015; 13: 10656-10656
  • 7 Wang Y, Wang H, Peng J, Zhu Q. Org. Lett. 2011; 13: 4604-4604
  • 8 Jia F, Zhou Z, Xu C, Cai Q, Li D, Wu A. Org. Lett. 2015; 17: 4236-4236

    • For selected papers, see:
    • 9a Zhang Y, Li X, Li J, Chen J, Meng X, Zhao M, Chen B. Org. Lett. 2012; 14: 26-26
    • 9b Quan XJ, Ren ZH, Wang YY, Guan HZ. Org. Lett. 2014; 16: 5728-5728
    • 9c Li J, Wang D, Zhang Y, Li J, Chen B. Li J, Wang D, Zhang Y, Li J, Chen B. Org. Lett. 2009; 11: 3024-3024
    • 9d Kumar S, Dubey S, Saxena N, Awasthi SK. Tetrahedron Lett. 2014; 55: 6034-6034
    • 9e Mani P, Singh AK, Awasthi SK. Tetrahedron Lett. 2014; 55: 1879-1879

      For selected papers, see:
    • 10a Zhu W, Ma D. Chem. Commun. 2004; 888-888
    • 10b Andersen J, Madsen U, Björkling F, Liang X. Synlett 2005; 2209-2209
    • 10c Markiewicz JT, Wiest O, Helquist P. J. Org. Chem. 2010; 75: 4887-4887
    • 10d Zhao H, Fu H, Qiao R. J. Org. Chem. 2010; 75: 3311-3311
    • 10e Goriya Y, Ramana CV. Tetrahedron 2010; 66: 7642-7642

      For selected papers, see:
    • 11a Xu C, Jia F, Zhou Z, Zheng S, Li H, Wu A. J. Org. Chem. 2016; 81: 3000-3000
    • 11b Shinde MH, Kshirsagar UA. RSC Adv. 2016; 6: 52884-52884
    • 11c Li T, Chen M, Yang L, Xiong Z, Wang Y, Li F, Chen D. Tetrahedron 2016; 72: 868-868
    • 11d Jia F, Xu C, Zhou Z, Cai Q, Li D, Wu A. Org. Lett. 2015; 17: 2820-2820
    • 11e Shang X, Zhao S, Chen W, Chen C, Qiu H. Chem. Eur. J. 2014; 20: 1825-1825
    • 11f Goriya Y, Ramana CV. Chem. Commun. 2014; 50: 7790-7790
    • 11g Kumar MR, Park A, Park N, Lee S. Org. Lett. 2011; 13: 3542-3542
  • 12 Li T, Yang L, Ni K, Shi Z, Li F, Chen D. Org. Biomol. Chem. 2016; 14: 6297-6297
    • 13a Zhang H, Zhao L, Wang DX, Wang MX. Org. Lett. 2013; 15: 3836-3836
    • 13b Huang H, Ji X, Tang X, Zhang M, Li X, Jiang H. Org. Lett. 2013; 15: 6254-6254
    • 13c Yu DG, Suri M, Glorius F. J. Am. Chem. Soc. 2013; 135: 8802-8802
    • 13d Dhar D, Tolman WB. J. Am. Chem. Soc. 2015; 137: 1322-1322
  • 14 Yao T. Tetrahedron Lett. 2015; 56: 4623-4623
  • 15 Alharbi N, Díaz-Moscoso A, Tizzard GJ, Coles SJ, Cook MJ, Cammidge AN. Tetrahedron 2014; 70: 7370-7370
  • 16 Wei Z, Zheng L, Dang Q, Bai X. J. Heterocycl. Chem. 2009; 46: 1425-1425