Synthesis 2017; 49(11): 2402-2410
DOI: 10.1055/s-0036-1588730
paper
© Georg Thieme Verlag Stuttgart · New York

One-Step Synthesis of Methoxylated Phloroglucinol Derivatives Promoted by Niobium Pentachloride: An Experimental and Theoretical Approach

Willian Henrique dos Santos
a   Department of Chemistry, Faculty of Sciences, São Paulo State University (UNESP), 17033-360, Bauru, São Paulo, Brazil
,
Eliezer Fernando de Oliveira
b   Department of Physics, Faculty of Sciences, São Paulo State University (UNESP), 17033-360, Bauru, São Paulo, Brazil
,
Francisco Carlos Lavarda
b   Department of Physics, Faculty of Sciences, São Paulo State University (UNESP), 17033-360, Bauru, São Paulo, Brazil
,
Ives Antonio Leonarczyk
c   Department of Chemistry, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235 - SP-310, São Carlos, São Paulo, Brazil   Email: lcsilva@fc.unesp.br
,
Marco Antonio Barbosa Ferreira
c   Department of Chemistry, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, km 235 - SP-310, São Carlos, São Paulo, Brazil   Email: lcsilva@fc.unesp.br
,
Luiz Carlos da Silva-Filho*
a   Department of Chemistry, Faculty of Sciences, São Paulo State University (UNESP), 17033-360, Bauru, São Paulo, Brazil
› Author Affiliations
Further Information

Publication History

Received: 30 November 2016

Accepted after revision: 30 January 2017

Publication Date:
22 February 2017 (online)


Abstract

Phloroglucinol derivatives are an important class of natural compounds featuring the rhodomyrtone derivatives. In this work, the synthesis of compounds with a structure core of rhodomyrtosone I is described using a multicomponent reaction between aldehyde derivatives, dihydroresorcinol, and 3,5-dimethoxyphenol promoted by niobium pentachloride. This new method is simple, cost-effective, and provides a good yield. In addition, it can be conducted in good reaction times. Using Density Functional Theory (DFT) studies, bases are provided for a proposed reaction mechanism for the multicomponent reaction by exploring the energetics of proposed reactive intermediates and transition states.

Supporting Information

 
  • References

    • 1a Yang F, Cao Y. Appl. Microbiol. Biotechnol. 2012; 93: 487-487
    • 1b Singh IP, Sidana J, Bharate SB, Foley WJ. Nat. Prod. Rep. 2010; 27: 393-393
    • 1c Singh IP, Bharate SB. Nat. Prod. Rep. 2006; 23: 558-558
    • 2a Wiechmann K, Müller H, Huch V, Hartmann D, Werz O, Jauch J. Eur. J. Med. Chem. 2015; 101: 133-133
    • 2b Nishiwaki S, Fujiwara S, Wukirsari T, Iwamoto H, Mori S, Nishi K, Sugahara T, Yamauchi S, Shuto Y. J. Nat. Prod. 2015; 78: 43-43
    • 2c Massaro CF, Smyth TJ, Smyth F, Heard T, Leonhardt SD, Katouli M, Wallace HM, Brooks P. Phytother. Res. 2015; 29: 48-48
    • 2d Bharate SB, Khan SI, Tekwani BL, Jacob M, Khan IA, Singh IP. Bioorg. Med. Chem. 2008; 16: 1328-1328
    • 2e Bharate SB, Bhutani KK, Khan SI, Tekwani BL, Jacob MR, Khan IA, Singh IP. Bioorg. Med. Chem. 2006; 14: 1750-1750
    • 2f Bharate SB, Chauthe SK, Bhutani KK, Singh IP. Aust. J. Chem. 2005; 58: 551-551
    • 2g Bloor SJ. J. Nat. Prod. 1992; 55: 43-43
    • 3a Singh IP, Sidana J, Bansal P, Foley WJ. Expert Opin. Ther. Pat. 2009; 19: 847-847
    • 3b Wang L, Chen H, Zhang T, Zhang J, Yang LJ. Hazard Mater. 2007; 147: 576-576
    • 3c Wu S, Watanabe N, Mita S, Dohra H, Ueda Y, Shibuya M, Ebizuka Y. Plant Physiol. 2004; 135: 95-95
    • 4a Hiranrat A, Mahabusarakam W. Tetrahedron 2008; 64: 11193-11193
    • 4b Hiranrat A, Chitbankluoi W, Mahabusarakam W, Limsuwan S, Voravuthikunchai SP. Nat. Prod. Res. 2012; 26: 1904-1904
    • 5a Sianglum W, Srimanote P, Wonglumsom W, Kittiniyom K, Voravuthikunchai SP. PLoS One 2011; 6: e16628-e16628
    • 5b Visuthi M, Srimanote P, Voravuthikunchai SP. J. Microbiol. 2011; 49: 956-956
    • 5c Limsuwan S, Trip EN, Kouwen TR. H. M, Piersma S, Hiranrat A, Mahabusarakam W, Voravuthikunchai SP, van Dijl JM, Kayser O. Phytomed 2009; 16: 645-645
  • 6 Makino M, Fujimoto Y. Phytochemistry 1999; 50: 273-273
    • 7a Gervais A, Lazarski KE, Porco JA. Jr. J. Org. Chem. 2015; 80: 9584-9584
    • 7b Morkunas M, Maier ME. Tetrahedron 2015; 71: 9662-9662
    • 7c Morkunas M, Dube L, Götz F, Maier ME. Tetrahedron 2013; 69: 8559-8559
    • 7d Leejae S, Yingyongnarongkul B, Suksamrarn A, Voravuthikunchai SP. Chin. Chem. Lett. 2012; 23: 1011-1011
    • 8a da Silva-Filho LC, Constantino MG, Lacerda VJr, da Silva GV. J. Lett. Org. Chem. 2004; 1: 360-360
    • 8b da Silva-Filho LC, Constantino MG, Cunha Neto A, Heleno VC. G, da Silva GV. J, Lopes JL. C. Spectrochim. Acta, Part A 2004; 61: 171-171
    • 8c da Silva-Filho LC, Constantino MG, Lacerda VJr, da Silva GV. J, Invernize PR. Beilstein J. Org. Chem. 2005; 1: 14-14
    • 8d da Silva-Filho LC, Constantino MG, Lacerda VJr, da Silva GV. J, Invernize PR. Synth. Commun. 2007; 37: 3529-3529
    • 8e da Silva-Filho LC, Constantino MG, Lacerda VJr, da Silva GV. J. Synthesis 2008; 2527-2527
    • 8f da Silva-Filho LC, Constantino MG, Polo EC, da Silva GV. J. Quim. Nova 2008; 31: 763-763
    • 8g da Silva-Filho LC, Frenhe M. Orbital 2011; 3: 1-1
    • 8h da Silva BH. S. T, Martins LM, da Silva-Filho LC. Synlett 2012; 23: 1973-1973
    • 8i Santos WH, da Silva-Filho LC. Synthesis 2012; 44: 3361-3361
    • 8j Martins LM, da Silva BH. S. T, Menezes ML, da Silva-Filho LC. Heterocycl. Lett. 2013; 3: 307-307
    • 8k Santos WH, Siqueira MS, da Silva-Filho LC. Quím. Nova 2013; 36: 1303-1303
    • 8l Andrade A, dos Santos GC, da Silva-Filho LC. J. Heterocycl. Chem. 2014; 52: 273-273
    • 8m Bartolomeu AA, Menezes ML, da Silva-Filho LC. Synth. Commun. 2015; 45: 1114-1114
    • 8n Oshiro PB, Lima PS. S. G, Menezes ML, da Silva-Filho LC. Tetrahedron Lett. 2015; 56: 4476-4476
    • 9a Zhu J, Bienaymé H. Multicomponent Reactions . Wiley-VCH; Weinheim: 2005
    • 9b Bienaymé H, Hulme C, Oddon G, Schimitt P. Chem. Eur. J. 2000; 6: 3321-3321
    • 10a Isambert N, Lavilla R. Chem. Eur. J. 2008; 14: 8444-8444
    • 10b D’Souza DM, Muller TJ. J. Chem. Soc. Rev. 2007; 36: 1095-1095
    • 11a Cordier C, Morton D, Murrison S, Nelson A, O’Leary-Steele C. Nat. Prod. Rep. 2008; 25: 719-719
    • 11b Kalinski C, Lemoine H, Schmidt J, Burdack C, Kolb J, Umkehrer J. Synthesis 2008; 4007-4007
    • 11c Jain SL, Prasad VV. D. N, Sain B. Catal. Commun. 2008; 9: 499-499
    • 11d Wang S.-X, Wang M.-X, Wang D.-X, Zhu J. Angew. Chem. Int. Ed. 2008; 47: 388-388
    • 11e Wang R, Li B, Huang T, Shi L, Lu X. Tetrahedron Lett. 2007; 48: 2071-2071
    • 11f Dondoni A, Massi A. Acc. Chem. Res. 2006; 39: 451-451
    • 11g Kusebauch U, Beck B, Messer K, Herdtweck E, Dömling A. Org. Lett. 2003; 5: 4021-4021
    • 11h Hulme C, Gore V. Curr. Med. Chem. 2003; 10: 51-51
    • 11i Fu N.-Y, Yuan Y.-F, Cao Z, Wang S.-W, Wang J.-T, Peppe C. Tetrahedron 2002; 58: 4801-4801
    • 11j Lu J, Bai Y, Wang Z, Yang B, Ma H. Tetrahedron Lett. 2000; 41: 9075-9075
    • 11k Ranu BC, Hajra A, Jana U. J. Org. Chem. 2000; 65: 6270-6270
    • 12a Andrade CK. Z. Curr. Org. Synth. 2004; 1: 333-333
    • 12b Andrade CK. Z, Rocha O. Mini-Rev. Org. Chem. 2006; 3: 271-271
    • 12c Hou J-T, Gao J-W, Zhang Z-H. Appl. Organomet. Chem. 2010; 25: 47-47
    • 12d Hou J-T, Liu Y-H, Zhang Z-H. J. Heterocycl. Chem. 2010; 47: 703-703
    • 12e Hou J-T, Chen H-Li, Zhang Z-H. Phosphorus Sulfur Silicon Relat. Elem. 2011; 186: 88-88
    • 12f Hou J-T, Gao J-W, Zhang Z-H. Monatsh. Chem. 2011; 142: 495-495
    • 12g Lacerda VJr, dos Santos DA, da Silva-Filho LC, Greco SJ, dos Santos RB. Aldrichim. Acta 2012; 45: 19-19
    • 12h Arpini BH, Bartolomeu AA, Andrade CK. Z, da Silva-Filho LC, Lacerda VJr. Curr. Org. Synth. 2015; 12: 570-570
  • 13 Standard Test Method for Purity by Differential Scanning Calorimetry ASTM. ASTM International; West Conshohocken PA: 2014
  • 14 Santos WH, da Silva-Filho LC. Chem. Pap. 2016; 70: 1658-1658
  • 15 Pugazhenthi I, Ghouse SM, Khan F-RN, Jeong ED, Kim J-P, Chung EH, Kumar YS, Desaradhan C. RSC Adv. 2015; 5: 17257-17257
    • 16a He X, Tao J, Hu X, Wang H, Shang Y. J. Org. Chem. 2016; 81: 2062-2062
    • 16b Hsiao C.-C, Liao H.-H, Rueping M. Angew. Chem. Int. Ed. 2014; 53: 13258-13258
  • 17 Alves OL. Quim. Nova 1986; 9: 276-276
  • 18 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision D.01 . Gaussian, Inc; Wallingford CT: 2013
  • 19 Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys. 2010; 132: 154104-154104