Synthesis 2017; 49(14): 3112-3117
DOI: 10.1055/s-0036-1588785
paper
© Georg Thieme Verlag Stuttgart · New York

An Approach to 3-Oxa-7-azabicyclo[3.3.0]octanes – Bicyclic Morpholine Surrogates

Yevhenii M. Sokolenko
a   Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
b   Enamine Ltd., Alexandra Matrosova Street 23, Kyiv 01103, Ukraine   Email: gregor@univ.kiev.ua
,
Eugeniy N. Ostapchuk
a   Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
b   Enamine Ltd., Alexandra Matrosova Street 23, Kyiv 01103, Ukraine   Email: gregor@univ.kiev.ua
,
Artem Artemenko
b   Enamine Ltd., Alexandra Matrosova Street 23, Kyiv 01103, Ukraine   Email: gregor@univ.kiev.ua
,
Oleksandr O. Grygorenko*
a   Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
› Author Affiliations
Further Information

Publication History

Received: 02 February 2017

Accepted after revision: 21 March 2017

Publication Date:
13 April 2017 (online)


Abstract

An approach to 3-oxa-7-azabicyclo[3.3.0]octanes, bicyclic morpholine analogues, is reported, which relies on [3+2] cycloaddition of maleic anhydrides or furan-2(5H)-ones and an in situ generated azomethine ylide. The utility of the method was demonstrated on a multigram scale.

Supporting Information

 
  • References

  • 1 Pal’chikov VA. Russ. J. Org. Chem. 2013; 49: 787
  • 2 Wijtmans R. Vink MK. S. Schoemaker HE. van Delft FL. Blaauw RH. Rutjes FP. J. T. Synthesis 2004; 641
  • 3 Vo C.-VT. Bode JW. J. Org. Chem. 2014; 79: 2809
  • 4 Al-Ghorbani M. Bushra Begum A. Zabiulla Mamatha SV. Khanum SA. J. Chem. Pharm. Res. 2015; 7 (5): 281 ; http://www.jocpr.com/
  • 5 Wishart DS. Knox C. Guo AC. Shrivastava S. Hassanali M. Stothard P. Chang Z. Woolsey J. Nucleic Acids Res. 2006; 34: D668
  • 6 Gu J. Gui Y. Chen L. Yuan G. Lu H.-Z. Xu X. PLoS ONE 2013; 8: e62839

    • For selected recent works on synthesis of bicyclic morpholine analogues, see:
    • 7a Zaytsev AV. Pickles JE. Harnor SJ. Henderson AP. Alyasiri M. Waddell PG. Cano C. Griffin RJ. Golding BT. RSC Adv. 2016; 6: 53955
    • 7b Geoghegan K. Bode JW. Org. Lett. 2015; 17: 1934
    • 7c Dugar S. Sharma A. Kuila B. Mahajan D. Dwivedi S. Tripathi V. Synthesis 2015; 47: 712
    • 7d Zhang D.-F. Li P. Lin Z.-Y. Huang H.-H. Chin. Chem. Lett. 2014; 25: 479
    • 7e Siau W.-Y. Bode JW. J. Am. Chem. Soc. 2014; 136: 17726
    • 7f Walker DP. Eklov BM. Bedore MW. Synthesis 2012; 44: 2859
    • 7g Brice H. Gill DM. Goldie L. Keegan PS. Kerr WJ. Svensson PH. Chem. Commun. 2012; 48: 4836
  • 8 Nadin A. Hattotuwagama C. Churcher I. Angew. Chem. Int. Ed. 2012; 51: 1114
  • 9 Machinaga N. Iimura S. Yoneda Y. Chiba J. Muro F. Hoh H. Nakayama A. EP 1961750, 2008
  • 10 Priepke H. Doods H. Heim-Riether A. Kuelzer R. Pfau R. Rudolf K. Stenkamp D. WO 2012076673, 2012
  • 11 Turner SC. Bakker MH. M. Hornberger W. WO 2009/130317, 2009
  • 12 Bacani G. Chrovian CC. Eccles W. Fourie AM. Gomez L. Grice CA. Kearney AM. Landry-Bayle AM. Lee-Dutra A. Santillan A. Tanis VM. Wiener JJ. M. WO 2010/132599, 2010
  • 13 Ebel H. Frattini S. Giovannini R. Scheuerer S. WO 2012171863, 2012
  • 14 Ma Z. Chu DT. W. Cooper CS. Li Q. Fung AK. L. Wang S. Shen LL. Flamm RK. Nilius AM. Alder JD. Meulbroek JA. Or YS. J. Med. Chem. 1999; 42: 4202
  • 15 Henderson JL. Kormos BL. Hayward MM. Coffman KJ. Jasti J. Kurumbail RG. Wager TT. Verhoest PR. Noell GS. Chen Y. Needle E. Berger Z. Steyn SJ. Houle C. Hirst WD. Galatsis P. J. Med. Chem. 2015; 58: 419
  • 16 Achini R. Oppolzer W. Tetrahedron Lett. 1975; 16: 369
  • 17 Gansäuer A. Von Laufenberg D. Kube C. Dahmen T. Michelmann A. Behlendorf M. Sure R. Seddiqzai M. Grimme S. Sadasivam DV. Fianu GD. Flowers RA. Chem. Eur. J. 2015; 21: 280
  • 18 Altman J. Cohen E. Maymon T. Petersen JB. Reshef N. Ginsburg D. Tetrahedron 1969; 25: 5115
  • 19 Weinberg O. Knowles P. Ginsburg D. Helv. Chim. Acta 1985; 68: 610
  • 20 Dave PR. Forohar F. Axenrod T. Das KK. Qi L. Watnick C. Yazdekhasti H. J. Org. Chem. 1996; 61: 8897
    • 21a McAlpine I. Tran-Dubé M. Wang F. Scales S. Matthews J. Collins MR. Nair SK. Nguyen M. Bian J. Alsina LM. Sun J. Zhong J. Warmus JS. O’Neill BT. J. Org. Chem. 2015; 80: 7266
    • 21b Terao Y. Kotaki H. Imai N. Achiwa K. Chem. Pharm. Bull. 1985; 33: 2762
    • 21c Padwa A. Dent W. J. Org. Chem. 1987; 52: 235
    • 21d Srihari P. Yaragorla SR. Basu D. Chandrasekhar S. Synthesis 2006; 2646
    • 22a Golz C. Strohmann C. Kumar K. Chem. Eur. J. 2016; 22: 18373
    • 22b Yarmolchuk VS. Mukan IL. Grygorenko OO. Tolmachev AA. Shishkina SV. Shishkin OV. Komarov IV. J. Org. Chem. 2011; 76: 7010
    • 22c Pandiancherri S. Ryana SJ. Lupton DW. Org. Biomol. Chem. 2012; 10: 7903
    • 22d Sankar U. Kumar CV. S. Subramanian V. Balasubramanian KK. Mahalakshimi S. J. Org. Chem. 2016; 81: 2340
    • 22e Cai C. Kang F.-A. Beauchamp DA. Sui Z. Russell RK. Teleh CA. Tetrahedron: Asymmetry 2013; 24: 651
    • 22f Mandal M. Wu Y. Misiaszek J. Li G. Buevich A. Caldwell JP. Liu X. Mazzola RD. Orth P. Strickland C. Voigt J. Wang H. Zhu Z. Chen X. Grzelak M. Hyde LA. Kuvelkar R. Leach PT. Terracina G. Zhang L. Zhang Q. Michener MS. Smith B. Cox K. Grotz D. Favreau L. Mitra K. Kazakevich I. McKittrick BA. Greenlee W. Kennedy ME. Parker EM. Cumming JN. Stamford AW. J. Med. Chem. 2016; 59: 3231
  • 23 Armarego WL. F. Chai CL. L. Purification of Laboratory Chemicals . Elsevier; Oxford: 2003: 1-609
  • 24 Damodara K. Kimb J.-K. Jun J.-G. Tetrahedron Lett. 2017; 58: 50