Synlett 2017; 28(13): 1646-1648
DOI: 10.1055/s-0036-1588793
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Allylbenzene Derivatives through sp3 C–H Bond Functionalization of Toluene Derivatives

Fatemeh Shahsavari
a   School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6619 Tehran, Iran
b   National Petrochemical Company, Petrochemical Research and Technology Company, P.O. Box 1435884711, Tehran, Iran
,
Alireza Abbasi*
a   School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6619 Tehran, Iran
,
Majid Ghazanfarpour-Darjani*
c   Department of Chemistry, Islamic Azad University, Buinzahra Branch, P.O. Box 14115-175, Buinzahra, Iran   Email: m.ghazanfarpour@modares.ac.ir   Email: aabbasi@khayam.ut.ac.ir
,
Seyed Mehdi Ghafelebashi
b   National Petrochemical Company, Petrochemical Research and Technology Company, P.O. Box 1435884711, Tehran, Iran
,
Majid Daftari-Besheli
b   National Petrochemical Company, Petrochemical Research and Technology Company, P.O. Box 1435884711, Tehran, Iran
› Author Affiliations
Further Information

Publication History

Received: 03 February 2017

Accepted after revision: 24 March 2017

Publication Date:
26 April 2017 (online)


Abstract

An sp3 C–H bond-transformation reaction of toluene substrates to afford the corresponding allylbenzene derivatives is described. Optimum conditions were identified as involving the use of tetrabutylammonium iodide and tert-butyl hydroperoxide at 80 °C.

Supporting Information

 
  • References and Notes

  • 1 Godula K. Sames D. Science 2006; 312: 67
  • 2 Izawa Y. Pun D. Stahl SS. Science 2011; 333: 209
  • 3 Wang D.-H. Engle KM. Shi B.-F. Yu J.-Q. Science 2010; 327: 315
  • 4 Ren Z. Mo F. Dong G. J. Am. Chem. Soc. 2012; 134: 16991
  • 5 Zhang S.-Y. Zhang F.-M. Tu Y.-Q. Chem. Soc. Rev. 2011; 40: 1937
  • 6 Wasa M. Engle KM. Yu J.-Q. J. Am. Chem. Soc. 2009; 131: 9886
  • 7 Hartwig JF. J. Am. Chem. Soc. 2016; 138: 2
  • 8 Quinn RK. Könst ZA. Michalak SA. Schmidt Y. Szklarski AR. Flores AR. Nam S. Horne DA. Vanderwal CD. Alexanian EJ. J. Am. Chem. Soc. 2016; 138: 696
  • 9 Davidson JM. Triggs C. Chem. Ind. (London) 1966; 457
  • 10 Bryant DR. McKeon JE. Ream BC. J. Org. Chem. 1968; 33: 4123
  • 11 Varma RS. Naicker KP. Green Chem. 1999; 1: 247
  • 12 Wang S. Qian Q. Gong H. Org. Lett. 2012; 14: 3352
  • 13 Ueda M. Nishimura K. Kashima R. Ryu I. Synlett 2012; 23: 1085
  • 14 Dunet G. Knochel P. Synlett 2007; 1383
  • 15 Jia C. Piao D. Oyamada J. Lu W. Kitamura T. Fujiwara Y. Science 2000; 287: 1992
  • 16 Liu H. Shi G. Pan S. Jiang Y. Zhang Y. Org. Lett. 2013; 15: 4098
  • 17 Feng J. Liang S. Chen S.-Y. Zhang J. Fu S.-S. Yua XQ. Adv. Synth. Catal. 2012; 354: 1287
  • 18 Sakamoto R. Inada T. Selvakumar S. Moteki SA. Maruoka K. Chem. Commun. (Cambridge) 2016; 52: 3758
  • 19 Khalaj M. Ghazanfarpour-Darjani M. RSC Adv. 2015; 5: 80698
  • 20 Ghazanfarpour-Darjani M. Babapour-Kooshalshahi M. Mousavi-Safavi SM. Akbari-Neyestani J. Khalaj M. Synlett 2016; 27: 259
  • 21 Khalaj M. Ghazanfarpour-Darjani M. Talei Bavil Olyai MR. Faraji Shamami S. J. Sulfur Chem. 2016; 37: 211
  • 22 Alkyl Arylalkenoates 3al; General Procedure A sample tube was charged with TBAI (74 mg, 20 mol%), 70% aq TBHP (2.0 mmol), and the appropriate alkyne 2 (1.0 mmol), and the mixture was stirred for 15 min at 25 °C. The appropriate toluene derivative 1 (1.5 mL) was added and the mixture was stirred under vacuum at 80 °C for 14 h. The crude mixture was then concentrated in vacuo, and the reaction was quenched by addition of sat. aq Na2S2O3 (3.0 mL). The mixture was extracted with EtOAc (3 × 5 mL), and the combined organic phases were dried (MgSO4), filtered, and concentrated in vacuo. The crude product was purified by column chromatography [silica gel, hexane–EtOAc (8:1)]. Dimethyl 2-Benzylfumarate (3a) Colorless oil; yield: 0.17 g (84%). IR (KBr): 3035, 2928, 1728, 1715, 1311, 1108 cm–1; 1H NMR (500.1 MHz, CDCl3): δ = 3.57 (s, 2 H), 3.78 (s, 3 H), 3.89 (s, 3 H), 6.38 (s, 1 H), 7.23 (d, 3 J = 7.0 Hz, 2 H), 7.28–7.332 (m, 3 H). 13C NMR (125.7 MHz, CDCl3): δ = 45.6 (CH2), 53.3 (OCH3), 54.7 (OCH3), 127.7 (CH), 128.7 (2 CH), 129.3 (2 CH), 131.9 (CH), 136.1 (C), 147.7 (C), 165.5 (C=O), 167.0 (C=O). MS: m/z (%) = 234 (M+, 3), 219 (21), 188 (47), 116 (71), 91 (100). Anal. Calcd for C13H14O4 (234.25): C, 66.66; H, 6.02. Found: C, 66.95; H, 6.41. Dimethyl 2-(4-Chlorobenzyl)fumarate (3b) Colorless oil; yield: 0.23 g (86%). IR (KBr): 3014, 2971, 1735, 1721, 1316, 1135 cm–1. 1H NMR (500.1 MHz, CDCl3): δ = 3.46 (s, 2 H), 3.75 (s, 3 H), 3.85 (s, 3 H), 6.42 (s, 1 H), 7.32 (app d, 3 J = 7.1 Hz, 2 H), 7.45 (app d, 3 J = 7.1 Hz, 2 H). 13C NMR (125.7 MHz, CDCl3): δ = 48.6 (CH2), 53.3 (OCH3), 54.3 (OCH3), 128.6 (2 CH), 129.0 (2 CH), 133.8 (CH), 134.0 (C), 135.6 (C), 147.3 (C), 165.4 (C=O), 167.1 (C=O). MS: m/z (%) = 268 (M+, 1), 253 (10), 209 (29), 143 (57), 125 (100), 88 (38). Anal. Calcd for C13H13ClO4 (268.69): C, 58.11; H, 4.88; Cl, 13.19. Found: C, 58.49; H, 5.19; Cl, 13.54. Dimethyl 2-[(1-Naphthyl)methyl]fumarate (3h) Pale-yellow oil; yield: 0.24 g (86%). IR (KBr): 3043, 2978, 1728, 1716, 1361, 1182 cm–1. 1H NMR (500.1 MHz, CDCl3): δ = 3.76 (s, 3 H), 3.89 (s, 3 H), 4.11 (s, 2 H), 6.43 (s, 1 H), 7.06 (d, 3 J = 6.6 Hz, 1 H), 7.25–7.34 (m, 3 H), 7.78 (d, 3 J = 7.0 Hz, 1 H), 7.86 (d, 3 J = 7.1 Hz, 1 H) 7.95 (t, 3 J = 6.7 Hz, 1 H). 13C NMR (125.7 MHz, CDCl3): δ = 39.2 (CH2), 51.4 (OCH3), 57.4 (OCH3), 127.7 (CH), 127.8 (CH), 128.3 (CH), 128.7 (CH), 128.9 (C), 129.1 (C), 129.2 (CH), 129.4 (CH), 129.6 (CH), 130.4 (C), 131.1 (CH), 149.2 (C), 165.1 (C=O), 169.4 (C=O). MS: m/z (%) = 284 (M+, 2), 269 (12), 238 (41), 166 (46), 143 (69), 141 (100). Anal. Calcd for C17H16O4 (284.31): C, 71.82; H, 5.67. Found: C, 72.34; H, 5.98. Dimethyl 1H-Indene-2,3-dicarboxylate (4) A mixture of fumarate 3c (1.0 mmol), Pd2dba3 (0.05 mmol), tris(2-furyl)phosphine (0.15 mmol), and Cs2CO3 (3.0 mmol) in 1,4-dioxane (3.0 mL) was stirred for 30 min at 25 °C. The reaction vessel was evacuated and back-flushed with N2 (3×), and the mixture was stirred at 90 °C for 18 h. The mixture was then diluted with EtOAc (5.0 mL), sat. aq NH4Cl (5.0 mL) was added, and the resulting mixture was stirred for an additional 30 min. The two layers were separated, and the aqueous layer was extracted with EtOAc (3 × 5 mL). The organic layers were combined, dried (MgSO4), filtered, and concentrated in vacuo. The residue was purified by flash column chromatography [silica gel, hexane–EtOAc (5:1)] to give a yellow oil; yield: 0.21 g (89%). IR (KBr): 3028, 2957, 1735, 1728, 1371, 1107 cm–1. 1H NMR (500.1 MHz, CDCl3): δ = 3.57 (s, 3 H), 3.71 (s, 3 H), 4.11 (s, 2 H), 7.11 (d, 3 J = 6.7 Hz, 1 H), 7.23–7.34 (m, 2 H), 7.57 (d, 3 J = 7.1 Hz, 1 H). 13C NMR (125.7 MHz, CDCl3): δ = 46.2 (CH2), 53.0 (OCH3), 53.6 (OCH3), 125.3 (CH), 125.9 (CH), 126.5 (CH), 129.1 (CH), 130.3 (C), 133.5 (C), 142.3 (C), 147.8 (C), 165.5 (C=O), 167.1 (C=O). MS: m/z (%) = 232 (M+, 4), 173 (16), 114 (37), 91 (100), 77 (61). Anal. Calcd for C13H12O4 (232.24): C, 67.23; H, 5.21. Found: C, 67.89; H, 5.76.