Synlett 2017; 28(14): 1771-1774
DOI: 10.1055/s-0036-1588831
letter
© Georg Thieme Verlag Stuttgart · New York

Chemo- and Regioselective Asymmetric Friedel–Crafts Reaction of Furans and Thiophenes with α,β-Unsaturated Aldehydes through Dual Activation

Xiao-Ru Zhang
a   Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China
,
Su-Lan Zhou
a   Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China
,
Yi Yuan
b   College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, P. R. of China   Email: ycchen@scu.edu.cn
,
Wei Du
a   Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China
,
a   Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China
b   College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, P. R. of China   Email: ycchen@scu.edu.cn
› Author Affiliations
We are grateful for the financial support from the NSFC (21372160 and 21125206).
Further Information

Publication History

Received: 09 March 2017

Accepted after revision: 18 April 2017

Publication Date:
10 May 2017 (online)


Abstract

A highly chemo- and regioselective Friedel–Crafts alkylation reaction of furans and thiophenes has been developed, which relies on the activation from the remote conjugated Mukaiyama silyl enol ether motif. Excellent enantioslectivity is generally obtained in reactions with α,β-unsaturated aldehydes under the well-established iminium ion catalysis of a chiral secondary amine.

Supporting Information

 
  • References and Notes


    • For selected reviews on asymmetric Friedel–Crafts reaction, see:
    • 1a Bolm C. Hildebrand JP. Muñiz K. Hermanns N. Angew. Chem. Int. Ed. 2001; 40: 3284
    • 1b Bandini M. Melloni A. Umani-Ronchi A. Angew. Chem. Int. Ed. 2004; 43: 550
    • 1c Poulsen TB. Jørgensen KA. Chem. Rev. 2008; 108: 2903
    • 1d You S.-L. Cai Q. Zeng M. Chem. Soc. Rev. 2009; 38: 2190
  • 2 Paras NA. MacMillan DW. C. J. Am. Chem. Soc. 2001; 123: 4370

    • For selected examples, see:
    • 3a Jensen KB. Thorbauge J. Hazell RG. Jørgensen KA. Angew. Chem. Int. Ed. 2001; 40: 160
    • 3b Austin JF. MacMillan DW. C. J. Am. Chem. Soc. 2002; 124: 1172
    • 3c Evans DA. Scheidt KA. Frandrick KR. Lam HW. Wu J. J. Am. Chem. Soc. 2003; 125: 10780
    • 3d Blay G. Fernandez I. Pedro JR. Vila C. Org. Lett. 2007; 9: 2601
    • 3e Chen W. Du W. Yue L. Li R. Wu Y. Ding L.-S. Chen Y.-C. Org. Biomol. Chem. 2007; 5: 816
    • 3f Bartoli G. Bosco M. Carlone A. Pesciaioli F. Sambri L. Melchiorre P. Org. Lett. 2007; 9: 1403
    • 3g Sibi MP. Coulomb J. Stanley LM. Angew. Chem. Int. Ed. 2008; 47: 9913
    • 3h He Y. Lin M. Li Z. Liang X. Li G. Antilla JC. Org. Lett. 2011; 13: 4490
    • 3i Wang S.-G. Zhang W. You S.-L. Org. Lett. 2013; 15: 1488
    • 3j Mori K. Wakazawa M. Akiyama T. Chem. Sci. 2014; 5: 1799
    • 3k Zhang J.-W. Liu X.-W. Gu Q. Shi X.-X. You S.-L. Org. Chem. Front. 2015; 2: 476
    • 3l Nakamura S. Matsuda N. Ohara M. Chem. Eur. J. 2016; 22: 9478
    • 3m García-García C. Ortiz-Rojano L. Álvarez S. Álvarez R. Ribagorda M. Carreño MC. Org. Lett. 2016; 18: 2224
    • 3n Zhao Y. Wang L. Zhao J. Tetrahedron Lett. 2017; 58: 213
    • 4a Uraguchi D. Sorimachi K. Terada M. J. Am. Chem. Soc. 2004; 126: 11804
    • 4b Liu H. Xu J. Du D.-M. Org. Lett. 2007; 9: 4725
    • 4c Majer J. Kwiatkowski P. Jurczak J. Org. Lett. 2008; 10: 2955
    • 4d Adachi S. Tanaka F. Watanabe K. Harada T. Org. Lett. 2009; 11: 5206
    • 4e Adachi S. Tanaka F. Watanabe K. Watada A. Harada T. Synthesis 2010; 2652
    • 4f Kondoh A. Ota Y. Komuro T. Egawa F. Kanomata K. Terada M. Chem. Sci. 2016; 7: 1057
    • 4g Wang Y. Jiang L. Li L. Dai J. Xiong D. Shao Z. Angew. Chem. Int. Ed. 2016; 55: 15142
    • 5a Zhuang W. Gathergood N. Hazell RG. Jørgensen KA. J. Org. Chem. 2001; 66: 1009
    • 5b Saaby S. Bayón P. Aburel PS. Jørgensen KA. J. Org. Chem. 2002; 67: 4352
    • 5c Shirakawa S. Berger R. Leighton JL. J. Am. Chem. Soc. 2005; 127: 2858
    • 5d Majer J. Kwiatkowski P. Jurczak J. Org. Lett. 2009; 11: 4636
    • 5e Aikawa K. Asai Y. Hioki Y. Mikami K. Tetrahedron: Asymmetry 2014; 25: 1104
  • 6 Brown SP. Goodwin NC. MacMillan DW. C. J. Am. Chem. Soc. 2003; 125: 1192
    • 7a Li J.-L. Yue C.-Z. Chen P.-Q. Xiao Y.-C. Chen Y.-C. Angew. Chem. Int. Ed. 2014; 53: 5449
    • 7b Yang G.-J. Du W. Chen Y.-C. J. Org. Chem. 2016; 81: 10056

    • For HOMO activation of arene systems for [4+2] cycloadditions, see:
    • 7c Jiang H. Rodríguez-Escrich C. Johansen TK. Davis RL. Jørgensen KA. Angew. Chem. Int. Ed. 2012; 51: 10271
    • 7d Rodríguez-Escrich C. Davis RL. Jiang H. Stiller J. Johansen TK. Jørgensen KA. Chem. Eur. J. 2013; 19: 2932
    • 7e Xiao Y.-C. Yue C.-Z. Chen P.-Q. Chen Y.-C. Org. Lett. 2014; 16: 3208
    • 7f Xiao B.-X. Du W. Chen Y.-C. Adv. Synth. Catal. 2017; 359: 1018
    • 8a Wang W. Li H. Wang J. Org. Lett. 2005; 7: 1637
    • 8b Gupta V. Sudhir S. Mandal VT. Schneider C. Angew. Chem. Int. Ed. 2012; 51: 12609
    • 9a Saraber FC. E. Dratch S. Bosselaar G. Jansen BJ. M. de Groot A. Tetrahedron 2006; 62: 1717
    • 9b Hashmi AS. K. Wölfle M. Tetrahedron 2009; 65: 9021
    • 9c Kang BC. Shim SY. Ryu DH. Org. Lett. 2014; 16: 2077
    • 9d The configuration of the O-TBS enol ether is confirmed by NOEDS analysis. See the Supporting Information.
  • 10 Donslund BS. Johansen TK. Poulsen PH. Halskov KS. Jørgensen KA. Angew. Chem. Int. Ed. 2015; 54: 13860
  • 11 Lelais G. MacMillan DW. C. Aldrichimica Acta 2006; 39: 79
  • 12 The reaction was carried out with α,β-unsaturated aldehyde 3 (0.15 mmol) and silyl enol ether 2 (0.1 mmol) in CHCl3 (1.0 mL) in the presence of secondary amine catalyst C4 (4.9 mg, 0.02 mmol) and TFA (2.2 mg, 0.02 mmol) at –20 °C. After completion, the solution was concentrated, and the residue was dissolved in MeOH (2 mL), then NaBH4 (5.7 mg, 0.15 mmol) was added in one portion at r.t. After completion, the solution was concentrated and purified by flash chromatography on silica gel (PE–EtOAc) to afford the chiral product 4. Isolated products have been fully characterized by 1H NMR and 13C NMR spectroscopy (see the Supporting Information). (S,Z)-3-(5-{2-[(tert-Butyldimethylsilyl)oxy]prop-1-en-1-yl}furan-2-yl)-3-(4-nitrophenyl)propan-1-ol (4d) Yield: 35.0 mg (84%), yellow oil; the enantiomeric excess was determined to be 95% by HPLC analysis [Chiralpak AD-H column (5% 2-PrOH–n-hexane, 1.0 mL/min), UV (220 nm), t R (minor) = 11.32 min, t R (major) = 13.22 min]; [α]D 20 = +13.5 (c 0.80 in CHCl3). 1H NMR (400 MHz, CDCl3): δ = 8.14 (d, J = 8.8 Hz, 2 H), 7.41 (d, J = 8.8 Hz, 2 H), 6.35 (d, J = 3.2 Hz, 1 H), 6.13 (d, J = 3.2 Hz, 1 H), 5.34 (s, 1 H), 4.29 (t, J = 7.8 Hz, 1 H), 3.66–3.57 (m, 2 H), 2.39–2.33 (m, 1 H), 2.12–2.07 (m, 1 H), 1.95 (s, 3 H), 1.40 (s, 1 H), 0.95 (s, 9 H), 0.21–0.20 (m, 6 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 151.7, 151.6, 150.4, 148.9, 128.7, 123.8, 108.0, 106.6, 98.7, 60.1, 41.2, 37.1, 25.9, 23.4, 18.4, -3.1 ppm. ESI-HRMS: m/z calcd for C22H31NO5Si + Na+: 440.1864; found: 440.1868.
  • 13 To the best of our knowledge, there is only one example involving the Friedel–Crafts reaction of 2-methoxythiophene under aminocatalytic conditions, see: Huang Y. Walji AM. Larsen CH. MacMillan DW. C. J. Am. Chem. Soc. 2005; 127: 15051
    • 14a Freedman TB. Cao X. Dukor RK. Nafie LA. Chirality 2003; 15: 743
    • 14b Stephens PJ. Harada N. Chirality 2010; 22: 229
    • 14c Kong F.-D. Ma Q.-Y. Huang S.-Z. Wang P. Wang J.-F. Zhou L.-M. Yuan J.-Z. Dai H.-F. Zhao Y.-X. J. Nat. Prod. 2017; 80: 1039
  • 15 Wang M. Han F. Yuan HJ. Liu Q. Chem. Commun. 2010; 46: 2247