Synthesis 2017; 49(18): 4299-4302
DOI: 10.1055/s-0036-1588857
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of l-Ribose from d-Ribose by a Stereoconversion through Sequential Lactonization as the Key Transformation

Jaeyoung Ban
a   Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea
,
Saira Shabbir
b   Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
,
Minkyung Lim
a   Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea
,
Byunghoon Lee
c   Department of Applied Chemistry, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea   Email: hrhee@hanyang.ac.kr
,
Hakjune Rhee*
a   Department of Bionanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea
c   Department of Applied Chemistry, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea   Email: hrhee@hanyang.ac.kr
› Author Affiliations
Further Information

Publication History

Received: 14 April 2017

Accepted after revision: 08 May 2017

Publication Date:
20 June 2017 (online)


These authors contributed equally to this work.

Abstract

l-Ribose, a key precursor of various l-nucleosides can only be synthesized from other sugars or other non-sugar precursors. Herein, the study involves the synthesis of naturally rare l-ribose from readily available d-ribose. Though, many synthetic strategies are developed to meet the increasing demands of l-ribose, seeking innovation, a synthesis employing sequential lactonization as the key transformation was explored. This novel conversion involves protection, oxidation, sequential lactonization, reduction with DIBAL-H, and deprotection.

Supporting Information

 
  • References

  • 1 van Ekenstein WA. Blanksma J. Chem. Weekbl. 1909; 6: 373
  • 3 Okano K. Tetrahedron 2009; 65: 1937
  • 4 Cholongitas E. Vasiliadis T. Goulis I. Fouzas I. Antoniadis N. Papanikolaou V. Akriviadis E. J. Viral Hepatitis 2015; 22: 574
  • 5 Anderson DL. Drugs Today 2009; 45: 331
  • 6 Watson J. Curr. Opin. Invest. Drugs 2002; 3: 680
  • 7 Reitsma JM. Terhune SS. Antiviral Res. 2013; 100: 321
    • 8a Gunther WR. Duong Q. Roman-Leshkov YJ. Mol. Catal. A: Chem. 2013; 379: 294
    • 8b Jeon YJ. Song SM. Lee CS. Kim IH. Hwahak Konghak 2011; 49: 628
    • 8c Helanto M. Kiviharju K. Granstroem T. Leisola M. Nyyssoelae A. Appl. Microbiol. Biotechnol. 2009; 83: 77
    • 8d Stephen JA. Aust. J. Chem. 2005; 58: 58
    • 8e Bilik V. Caplovic J. Chem. Zvesti. 1973; 27: 547
  • 9 Moyroud E. Strazewski P. Tetrahedron 1999; 55: 1277
    • 10a Yun M. Moon HR. Kim HO. Choi WJ. Kim Y.-C. Park C.-S. Jeong LS. Tetrahedron Lett. 2005; 46: 5903
    • 10b Kang J.-S. Yun M.-H. Lee S.-D. Jeon B.-C. Shin J.-A. Patent PCT Int. Appl. WO 2004007513, 2004
    • 10c Sivets GG. Klennitskaya TV. Zhernosek EV. Mikhailopulo IA. Synthesis 2002; 253
    • 10d Jung ME. Xu Y. Patent PCT Int. Appl. WO9839347, 1998
    • 10e Jung ME. Xu Y. Tetrahedron Lett. 1997; 38: 4199
  • 11 Seo MJ. An J. Shim JH. Kim G. Tetrahedron Lett. 2003; 44: 3051
  • 12 Qi S. Zhang W. Feng Y. Tianranqi Huagong 2007; 32: 69
  • 13 Shi Z.-D. Yang B.-H. Wu Y.-L. Tetrahedron 2002; 58: 3287
  • 14 Perali RS. Mandava S. Bandi R. Tetrahedron 2011; 67: 4031
    • 15a Wagner J. Vieira E. Vogel P. Helv. Chim. Acta 1988; 71: 624
    • 15b Wulff G. Hansen A. Carbohydr. Res. 1987; 164: 123
    • 15c Matteson DS. Peterson ML. J. Org. Chem. 1987; 52: 5116
    • 15d Wulff G. Hansen A. Angew. Chem., Int. Ed. Engl. 1986; 25: 560
    • 15e Yamaguchi M. Mukaiyama T. Chem. Lett. 1981; 1005
  • 16 Takahashi H. Iwai Y. Hitomi Y. Ikegami S. Org. Lett. 2002; 4: 2401
  • 17 Amorati R. Pedulli GF. Pratt DA. Valgimigli L. Chem. Commun. 2010; 46: 5139
    • 18a Huang L. Teumelsan N. Huang X. Chem. Eur. J. 2006; 12: 5246
    • 18b Bosch MP. Campos F. Niubó I. Rosell G. Díaz JL. Brea J. Loza MI. Guerrero A. J. Med. Chem. 2004; 47: 4041
    • 19a Moreau C. Kirchberger T. Swarbrick JM. Bartlett SJ. Fliegert R. Yorgan T. Bauche A. Harneit A. Guse AH. Potter BV. L. J. Med. Chem. 2013; 56: 10079
    • 19b Prabhakar P. Rajaram S. Reddy DK. Shekar V. Venkateswarlu Y. Tetrahedron: Asymmetry 2010; 21: 216
  • 20 Zhao M. Li J. Mano E. Song Z. Tschaen DM. Grabowski EJ. J. Reider PJ. J. Org. Chem. 1999; 64: 2564
  • 21 De Luca L. Giacomelli G. Masala S. Porcheddu A. J. Org. Chem. 2003; 68: 4999
  • 22 Zanka A. Chem. Pharm. Bull. 2003; 51: 888
  • 23 Lerner LM. Carbohydr. Res. 1988; 184: 250
  • 24 CCDC 1446880 and CCDC 1446881 contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/get structures.
  • 25 Punirun T. Soorukram D. Kuhakarn C. Reutrakul V. Pohmakotr M. J. Org. Chem. 2015; 80: 7946
  • 26 Ivanova NA. Valiullina ZR. Shitikova OV. Miftakhov MS. Russ. J. Org. Chem. 2007; 43: 742
    • 27a Huang L. Teumelsan N. Huang X. Chem. Eur. J. 2006; 12: 5246
    • 27b Bosch MP. Campos F. Niubo I. Rosell G. Diaz JL. Brea J. Loza MI. Guerrero A. J. Med. Chem. 2004; 47: 4041
  • 28 Attwood SV. Barrett AG. M. J. Chem. Soc., Perkin Trans. 1 1984; 1315
  • 29 Matteson DS. Peterson ML. J. Org. Chem. 1987; 52: 5116