Synthesis 2017; 49(17): 4017-4024
DOI: 10.1055/s-0036-1589035
paper
© Georg Thieme Verlag Stuttgart · New York

Tetrabutylammonium Iodide Catalyzed Epoxidation of Naphthoquinone Derivatives with tert-Butyl Hydroperoxide as an Oxidant

Bai-Ru Ai
a   Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: Jiyuwang@cioc.ac.cn
b   University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Xu-Ling Chen
a   Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: Jiyuwang@cioc.ac.cn
b   University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Yu Dong
a   Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: Jiyuwang@cioc.ac.cn
b   University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Lei Tang*
c   Laboratory of Anaestheisa & Critical Care Medicine, Translational Neuroscience Center, and Department of Anaesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. of China   Email: manstein_1984@sina.com
,
Ji-Yu Wang*
a   Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China   Email: Jiyuwang@cioc.ac.cn
› Author Affiliations
This work is supported by Science and Technology Department of Sichuan Province under grant number 2015JY0171.
Further Information

Publication History

Received: 19 March 2017

Accepted after revision: 02 May 2017

Publication Date:
20 June 2017 (online)


Abstract

An efficient and environmentally benign procedure has been developed for the epoxidation of naphthoquinone derivatives by using tetrabutylammonium iodide as a catalyst and tert-butyl hydroperoxide as an oxidant in the presence of silicon dioxide. This protocol, which provides a facile base-free methodology for the synthesis of some new naphthoquinone-based epoxides, features mild reaction conditions, high yields, remarkably short reaction time, and broad substrate scope

Supporting Information

 
  • References

    • 1a Rappoport Z. The Chemistry of the Quinonoid Compounds . Vol. 2, Parts 1 and 2. Patai S. Wiley; New York: 1988
    • 1b Thomson RH. Naturally Occurring Quinones IV . Blackie Academic; London: 1997
    • 1c Bechtold T. Handbook of Natural Colorants . Vol. 151,18. Bechtold T. Mussak R. Wiley; New York: 2009
    • 1d Adeniyi BA. Robert MF. Chai H. Fong HH. Phytother. Res. 2003; 17: 282
    • 2a Blazejewski JC. Dorme R. Wakselman C. Synthesis 1985; 1120
    • 2b Blazejewski JC. Dorme R. Wakselman C. J. Chem. Soc., Perkin Trans. 1 1987; 1861
    • 2c Chen X. Engle KM. Wang DH. Yu JQ. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 2d Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
    • 3a Dharmaraja AT. Dash TK. Konkimalla VB. Chakrapani H. MedChemComm 2012; 3: 219
    • 3b Feroj Hasan AF. M. Furumoto T. Begum S. Fukui H. Phytochemistry 2001; 58: 1225
    • 4a Semmelhack MF. Zask A. J. Am. Chem. Soc. 1983; 105: 2034
    • 4b Ellestad GA. Whaley HA. Patterson EL. J. Am. Chem. Soc. 1966; 88: 4109
    • 4c Ellestad GA. Kunstmann MP. Whaley HA. Patterson EL. J. Am. Chem. Soc. 1968; 90: 1325
  • 5 Alake LB. Planta Med. 1994; 60: 477
    • 6a Maruo S. Nishio K. Sasamori T. Tokitoh N. Kuramochi K. Tsubaki K. Org. Lett. 2013; 15: 1556
    • 6b Uc-Cachón AH. Molina-Salinas GM. Said-Fernández S. Méndez-González M. Cáceres-Farfán M. Borges-Argáez R. Nat. Prod. Res. 2013; 27: 1174
    • 7a Wallin R. Sane DC. Hutson SM. Thromb. Res. 2003; 108: 221
    • 7b Goodstadt L. Ponting CP. Trends Biochem. Sci. 2004; 29: 289
    • 7c Choonara IA. Malia RG. Haynes BP. Hay CR. Cholerton S. Breckenridge AM. Preston FE. Park BK. Br. J. Clin. Pharmacol. 1988; 25: 1
    • 8a Sheldon RA. Kochi JK. Metal Catalyzed Oxidations of Organic Compounds . Academic Press; New York: 1981
    • 8b Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations. 2nd ed. Wiley-VCH; New York: 1999
    • 8c Banerjee D. Jagadeesh RV. Junge K. Pohl MM. Radnik J. Brückner A. Beller M. Angew. Chem. Int. Ed. 2014; 53: 4359
    • 9a Berkessel A. Guixà M. Schmidt F. Neudörfl JM. Lex J. Chem. Eur. J. 2007; 13: 4483
    • 9b Dharmaraja AT. Dash TK. Konkimalla VB. Chakrapani H. MedChemComm 2012; 3: 219
    • 10a Yag SG. Hwang JP. Park MY. Lee K. Kim YH. Tetrahedron 2007; 63: 5184
    • 10b Arai S. Tsuge H. Oku M. Miura M. Shioiri T. Tetrahedron 2002; 58: 1623
    • 10c Snatzke G. Wynberg H. Feringa B. Marsman BG. Greydanus B. Pluim H. J. Org. Chem. 1980; 45: 4094
    • 10d Pluim H. Wynberg H. J. Org. Chem. 1980; 45: 2498
    • 10e Claessens S. Habonimana P. De Kimpe N. Org. Biomol. Chem. 2010; 8: 3790
    • 10f Arai S. Oku M. Miura M. Shioiri T. Synlett 1998; 1201
    • 11a Bundu A. Berry NG. Gill CD. Dwyer CL. Stachulski AV. Taylor RJ. Whittall J. Tetrahedron: Asymmetry 2005; 16: 283
    • 11b Bunge A. Hamann H.-J. McCalmont E. Liebscher J. Tetrahedron Lett. 2009; 50: 4629
    • 11c Lattanzi A. Cocilova M. Iannece P. Scettri A. Tetrahedron: Asymmetry 2004; 15: 3751
    • 11d Kośnik W. Bocian W. Kozerski L. Tvaroška I. Chmielewski M. Chem. Eur. J. 2008; 14: 6087
    • 11e Dwyer CL. Gill CD. Ichihara O. Taylor RJ. K. Synlett 2000; 704
    • 11f Kośnik W. Stachulski AV. Chmielewski M. Tetrahedron: Asymmetry 2005; 16: 1975
    • 11g Genski T. Macdonald G. Wei X. Lewis N. Taylor RJ. K. Synlett 1999; 795
    • 11h Colonna S. Manfredi A. Annunziata R. Gaggero N. J. Org. Chem. 1990; 55: 5862
    • 11i Valderrama JA. Gonzalez MF. Torres C. Hetero­cycles 2003; 60: 2343
    • 12a Wu X.-F. Gong J.-L. Qi X. Org. Biomol. Chem. 2014; 45: 5807
    • 12b Saidulu G. Kumar RA. Anitha T. Kumar PS. Reddy KR. Tetrahedron Lett. 2016; 57: 1648
    • 13a Wong Y.-C. Tseng C.-T. Kao T.-T. Yeh Y.-C. Shia K.-S. Org. Lett. 2012; 14: 6024
    • 13b Jia Z. Nagano T. Li X. Chan AS. C. Eur. J. Org. Chem. 2013; 858
    • 13c Yu Y. Jiao L. Wang J. Wang H. Yu C. Hao E. Boens N. Chem. Commun. 2017; 581
    • 14a Liu H. Zhai T. Ding S. Hou Y. Zhang X. Feng L. Ma C. Org. Chem. Front. 2016; 3: 1096
    • 14b Wang L. Zhu K.-Q. Wu W.-T. Chen Q. He M.-Y. Catal. Sci. Technol. 2015; 5: 2891
    • 14c Aruri H. Singh U. Sharma S. Gudup S. Bhogal M. Kumar S. Singh D. Gupta VK. Kant R. Vishwakarma RA. Singh PP. J. Org. Chem. 2015; 80: 1929
    • 14d Achar TK. Mal P. J. Org. Chem. 2015; 80: 666
    • 14e Yuan Y. Hou W. Zhang-Negrerie D. Zhao K. Du Y. Org. Lett. 2014; 16: 5410
    • 14f Liu Z. Zhang J. Chen S. Shi E. Xu Y. Wan X. Angew. Chem. Int. Ed. 2012; 51: 3231
    • 14g Rajamanickam S. Majji G. Santra SK. Patel BK. Org. Lett. 2015; 17: 5586
    • 15a Zhang S. Guo L.-N. Wang H. Duan X.-H. Org. Biomol. Chem. 2013; 11: 4308
    • 15b Guo S. Yu J.-T. Dai Q. Yang H. Cheng J. Chem. Commun. 2014; 6240
    • 15c Xue Q. Xie J. Xu P. Hu K. Cheng Y. Zhu C. ACS Catal. 2013; 3: 1365
    • 15d Majji G. Rajamanickam S. Khatun N. Santra SK. Patel BK. J. Org. Chem. 2015; 80: 3440
    • 16a Wei W. Wen J. Yang D. Guo M. Wang Y. You J. Wang H. Chem. Commun. 2015; 768
    • 16b Yu W. Hu P. Fan Y. Yu C. Yan X. Li X. Xu X. Org. Biomol. Chem. 2015; 13: 3308
    • 16c Tang Y. Fan Y. Gao H. Li X. Xu X. Tetrahedron Lett. 2015; 56: 5616
    • 16d Li X. Xu X. Tang Y. Org. Biomol. Chem. 2013; 11: 1739
    • 16e Li X. Xu X. Zhou C. Chem. Commun. 2012; 12240
  • 17 Zhang Y. Hu G. Ma D. Xu P. Gao Y. Zhao Y. Chem. Commun. 2016; 2815
    • 18a Majji G. Guin S. Gogoi A. Rout SK. Patel BK. Chem. Commun. 2013; 3031
    • 18b Liu L. Yun L. Wang Z. Fu X. Yan C.-H. Tetrahedron Lett. 2013; 54: 5383
    • 18c Huang J. Li L.-T. Li H.-Y. Husan E. Wang P. Wang B. Chem. Commun. 2012; 10204
    • 18d Feng J. Liang S. Chen S.-Y. Zhang J. Fu S.-S. Yu X.-Q. Adv. Synth. Catal. 2012; 354: 1287
    • 19a Zhang S. Guo L.-N. Wang H. Duan X.-H. Org. Biomol. Chem. 2013; 11: 4308
    • 19b Chen L. Shi E. Liu Z. Chen S. Wei W. Li H. Xu K. Wan X. Chem. Eur. J. 2011; 17: 4085
  • 20 Shi E. Shao Y. Chen S. Hu H. Liu Z. Zhang J. Wan X. Org. Lett. 2012; 14: 3384
  • 21 Xie J. Jiang H. Cheng Y. Zhu C. Chem. Commun. 2012; 979
  • 22 Zhang J. Shao Y. Wang H. Luo Q. Chen J. Xu D. Wan X. Org. Lett. 2014; 16: 3312
  • 23 Fujiya A. Tanaka M. Yamaguchi E. Tada N. Itoh A. J. Org. Chem. 2016; 81: 7262
  • 24 Nekkanti S. Kumar NP. Sharma P. Kamal A. Nachtigall FM. Forero-Doria O. Santos LS. Shankaraiah N. RSC Adv. 2016; 6: 2671
  • 25 Motokura K. Itagaki S. Iwasawa Y. Miyaji A. Baba T. Green Chem. 2009; 11: 1876
  • 26 Kondo S. Harada T. Tanaka R. Unno M. Org. Lett. 2006; 8: 4621
  • 27 Hardman-Baldwin AM. Mattson AE. ChemSusChem 2014; 7: 3275
    • 28a Xu W. Nachtsheim BJ. Org. Lett. 2015; 17: 1585
    • 28b Zhang J. Jiang J. Li Y. Zhao Y. Wan X. Org. Lett. 2013; 15: 3222
    • 28c Dhineshkumar J. Prabhu KR. Eur. J. Org. Chem. 2016; 447

      Analytic data for known compounds:
    • 29a Maruyama K. Arakawa S. J. Org. Chem. 1977; 42: 3793
    • 29b Arakawa S. J. Org. Chem. 1977; 42: 3800
    • 29c Bundu A. Berry NG. Gill CD. Dwyer CL. Stachulski AV. Taylor RJ. K. Whittall J. Tetrahedron: Asymmetry 2005; 16: 283
    • 29d Dharmaraja AT. Dash TK. Konkimalla VB. Chakrapani H. MedChemComm 2012; 3: 219