Synthesis 2018; 50(01): 170-174
DOI: 10.1055/s-0036-1589111
paper
© Georg Thieme Verlag Stuttgart · New York

Trichloroisocyanuric Acid as an Efficient Reagent for the Synthesis of Phosphoroamidates via Atherton–Todd Reaction under Base-Free Conditions

Babak Kaboudin*
Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran, Email: kaboudin@iasbs.ac.ir
,
Atousa Donyavi
Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran, Email: kaboudin@iasbs.ac.ir
,
Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran, Email: kaboudin@iasbs.ac.ir
› Author Affiliations
The authors gratefully acknowledge support from the Institute for Advanced Studies in Basic Sciences (IASBS) Research Council under grant No. G2016IASBS31101.
Further Information

Publication History

Received: 04 July 2017

Accepted after revision: 29 August 2017

Publication Date:
12 September 2017 (online)


Abstract

A simple, efficient, and novel method is developed for the synthesis of phosphoroamidates via an Atherton–Todd coupling reaction of amines with dialkyl H-phosphite using trichloroisocyanuric acid as an efficient and safe reagent. Treatment of amines with dialkyl H-phosphite and trichloroisocyanuric acid under base-free conditions gives phosphoroamidates in moderate to good yields. The reaction proceeded effectively to afford the corresponding phosphoroamidates via a dehydrogenative coupling of H-phosphonates with amines. This method is easy, rapid, and good-yielding for the synthesis of phosphoroamidates.

Supporting Information

 
  • References

    • 1a Morello L. Yu P. Carmichael CD. Patrick BO. Fryzuk MD. J. Am. Chem. Soc. 2005; 127: 12796
    • 1b Allcock H. Phosphorus-Nitrogen Compounds:Cyclic, Linear, and High Polymeric Systems. Academic Press; New York: 1972
    • 2a Roman CA. Balzarini J. Meier C. J. Med. Chem. 2010; 53: 7675
    • 2b Cai YM. Gao X. Huang XT. Wang TJ. Zhao YF. Chin. J. Org. Chem. 2006; 26: 1677
    • 2c Venkatachalam TK. Samuel P. Qazi S. Uckun FM. Bioorg. Med. Chem. 2005; 13: 5408
    • 2d Venkatachalam TK. Goodman PA. Qazi S. D’Cruz O. Uckun FM. Curr. Pharm. Des. 2004; 10: 1713
    • 2e Uckun FM. Samuel P. Qazi S. Chen C. Pendergrass S. Venkatachalam TK. Antiviral Chem. Chemother. 2002; 13: 197
    • 2f Freel Meyers CL. Borch RF. J. Med. Chem. 2000; 43: 4319
    • 2g Ji GJ. Xue CB. Zhao YF. Synthesis 1988; 444
    • 2h Kortylewicz ZP. Galardy RE. J. Med. Chem. 1990; 33: 263
    • 2i Mc Mahon EG. Palomo MA. Moore WM. Proc. Natl. Acad. Sci. U.S.A. 1991; 88: 703
    • 2j Ciufolini MA. Spencer GO. J. Org. Chem. 1989; 54: 4739
    • 4a Roberts WP. Tate ME. Kerr A. Nature 1977; 265: 379
    • 4b Tate ME. Murphy PJ. Roberts WP. Kerr A. Nature 1979; 265: 697
    • 4c Phillips DR. Uramoto M. Isono K. McCloskey A. J. Org. Chem. 1993; 58: 854
    • 4d Guijarro JI. González-Pastor JE. Baleux F. Milla’n JL. S. Castilla MA. Rico M. Moreno F. Delepierre M. J. Biol. Chem. 1995; 270: 23520
    • 4e Hale JJ. Mills SG. MacCoss M. Dorn CP. Finke PE. Budhu RJ. Reamer RA. Huskey SE. W. Luffer-Atlas D. Dean BJ. McGowan EM. Feeney WP. Chiu SH. L. Cascieri MA. Chicchi GG. Kurtz MM. Sadowski S. Ber E. Tattersall FD. Rupniak NM. J. Williams AR. Rycroft W. Hargreaves R. Metzger JM. MacIntyre DE. J. Med. Chem. 2000; 43: 1234
    • 4f Serpi M. Bibbo R. Rat S. Roberts H. Hughes C. Caterson B. Alcaraz MJ. Gibert AT. Verson CR. A. McGuigan C. J. Med. Chem. 2012; 55: 4629
    • 4g Chang S.-l. Griesgraber GW. Southern PJ. Wagner CR. J. Med. Chem. 2001; 44: 223
  • 5 Meppan M. Pacini B. Bazzo R. Koch U. Leone JF. Koeplinger KA. Rowley M. Altamura S. Eur. J. Med. Chem. 2009; 44: 3765
    • 6a Atherton FR. Openshaw HT. Todd AR. J. Chem. Soc. 1945; 660
    • 6b Atherton FR. Todd AR. J. Chem. Soc. 1947; 674
    • 6c Le Corre SS. Berchel M. Gorves HC. Haelters J.-P. Jaffres P.-A. Beilstein J. Org. Chem. 2014; 10: 1166
    • 6d Steinberg GM. J. Org. Chem. 1950; 15: 637
    • 6e Dar BA. Dangroo NA. Gupta A. Wali A. Khuroo MA. Vishwakarma RA. Singh B. Tetrahedron Lett. 2014; 55: 1544
    • 6f Kaboudin B. Kazemi F. Habibi F. Tetrahedron Lett. 2015; 56: 6364
    • 6g Trofimov BA. Gusarova NK. Volkov PA. Ivanova NI. Khrapova KO. Heteroat. Chem. 2016; 27: 44
    • 7a Purohit AK. Pardasani D. Kumar A. Goud DR. Jain R. Dubey DK. Tetrahedron Lett. 2016; 57: 3754
    • 7b Fraser J. Wilson LJ. Blundell RK. Hayes CJ. Chem. Commun. 2013; 49: 8919
    • 7c Jin X. Yamaguchi K. Mizuni N. Org. Lett. 2013; 15: 418
  • 8 Dhineshkumar J. Prabhu KR. Org. Lett. 2013; 15: 6062
  • 9 Meaza M. Kowakzuk A. Shiley L. Yang JW. Guo H. Rios R. Adv. Synth. Catal. 2016; 358: 719
    • 10a Troev K. Kirilov EM. G. Roundhill DM. Bull. Chem. Soc. Jpn. 1990; 63: 1284
    • 10b Georgiev EM. Kaneti J. Troev K. Roundhill DM. J. Am. Chem. Soc. 1993; 115: 10964
  • 11 Ziegler K. Späth A. Schaaf E. Schumann W. Winkelmann E. Justus Liebigs Ann. Chem. 1942; 551: 80
  • 12 Tilstam U. Weinmann H. Org. Process Res. Dev. 2002; 6: 384
  • 13 Juenge E. Beal D. Tetrahedron Lett. 1968; 5819
  • 14 Juenge EC. Spangler PL. Duncan W. J. Org. Chem. 1966; 31: 3836
  • 15 Hiegel GA. Nalbandy M. Synth. Commun. 1992; 22: 1589
  • 16 Hiegel GA. Bayne CD. Donde Y. Tamashiro GS. Hilberath LA. Synth. Commun. 1996; 26: 2633
  • 17 Moriarty RM. Vaid RK. Duncan MP. Ochiai M. Inenaga M. Nagao Y. Tetrahedron Lett. 1988; 29: 6913
  • 18 Acharya J. Gupta AK. Shakya PD. Kaushik MP. Tetrahedron Lett. 2005; 46: 5293
  • 19 Wang G. Yu Q.-Y. Chen S.-Y. Yu X.-Q. Tetrahedron Lett. 2013; 54: 6230