Synthesis 2018; 50(05): 1166-1174
DOI: 10.1055/s-0036-1589131
paper
© Georg Thieme Verlag Stuttgart · New York

Catalytic Direct Nucleophilic Substitution of Primary Morita–Baylis­–Hillman Adducts and Application to the Straightforward Synthesis of Dihydroisoindolones

Marwa Ayadi
a   Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Organique Structurale LR99ES14, Campus Universitaire, 2092 Tunis, Tunisia
,
Pierre C. Mpawenayo
b   Institut Charles Gerhardt UMR 5253 CNRS-UM-ENSCM, 240 Avenue du Professeur Emile Jeanbrau, 34296 Montpellier Cedex 5, France   Email: emmanuel.vrancken@enscm.fr
,
Farhat Rezgui
a   Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Organique Structurale LR99ES14, Campus Universitaire, 2092 Tunis, Tunisia
,
Eric Leclerc
b   Institut Charles Gerhardt UMR 5253 CNRS-UM-ENSCM, 240 Avenue du Professeur Emile Jeanbrau, 34296 Montpellier Cedex 5, France   Email: emmanuel.vrancken@enscm.fr
,
b   Institut Charles Gerhardt UMR 5253 CNRS-UM-ENSCM, 240 Avenue du Professeur Emile Jeanbrau, 34296 Montpellier Cedex 5, France   Email: emmanuel.vrancken@enscm.fr
,
Jean-Marc Campagne
b   Institut Charles Gerhardt UMR 5253 CNRS-UM-ENSCM, 240 Avenue du Professeur Emile Jeanbrau, 34296 Montpellier Cedex 5, France   Email: emmanuel.vrancken@enscm.fr
› Author Affiliations
Further Information

Publication History

Received: 15 September 2017

Accepted after revision: 17 October 2017

Publication Date:
14 November 2017 (online)


Abstract

An interesting γ-carbonyl effect permits the dual iron/boron-catalyzed direct nucleophilic substitution of functionalized primary allylic­ alcohols with a large variety of nucleophiles. The resulting substitution products are useful synthetic platforms for heterocycle synthesis, as illustrated in a ready access to tetrahydroisoindol-4-ones.

Supporting Information

 
  • References

    • 1a Bolm C. Legros J. Le Paih J. Zani L. Chem. Rev. 2004; 104: 6217
    • 1b Correra A. Mancheňo OG. Bolm C. Chem. Soc. Rev. 2008; 37: 1108
    • 1c Sun C.-L. Li B.-J. Shi Z.-J. Chem. Rev. 2011; 111: 1293
    • 1d Majundar KC. De N. Ghosh T. Roy B. Tetrahedron 2014; 70: 4827
    • 1e Bauer I. Knölker H.-J. Chem. Rev. 2015; 115: 3170
    • 2a Debleds O. Dal Zotto C. Vrancken E. Campagne J.-M. Retailleau P. Adv. Synth. Catal. 2009; 351: 1991
    • 2b Debleds O. Gayon E. Ostaszuk E. Vrancken E. Campagne J.-M. Chem. Eur. J. 2010; 16: 12207
    • 2c Gayon E. Quinonero O. Lemouzy S. Vrancken E. Campagne J.-M. Org. Lett. 2011; 13: 6418
    • 2d Gayon E. Gerard H. Vrancken E. Campagne J.-M. Synlett 2015; 2336
    • 3a Elleuch H. Ayadi M. Bouajila J. Rezgui F. J. Org. Chem. 2016; 81: 1757
    • 3b Mhasni O. Rezgui F. Tetrahedron Lett. 2010; 51: 586
    • 3c Abidi A. Oueslati Y. Rezgui F. Beilstein J. Org. Chem. 2016; 12: 2402
    • 3d Ayadi M. Elleuch H. Vrancken E. Rezgui F. Beilstein J. Org. Chem. 2016; 12: 2906
  • 4 Vrancken E. Campagne J.-M. In Organoiron Compounds . Marek I. Rappoport Z. Wiley; Chichester: 2013. Chap. 11, 419
  • 5 Kočovaký P. Dvořák D. Tetrahedron Lett. 1986; 27: 5015
  • 6 For a comprehensive review, see: Dryzhakov M. Richmond E. Moran J. Synthesis 2016; 48: 935
    • 7a Usui I. Schmidt S. Keller M. Breit B. Org. Lett. 2008; 10: 1207
    • 7b Das BG. Nallagonda R. Ghorai P. J. Org. Chem. 2012; 77: 5577
    • 7c Rueping M. Vila C. Uria U. Org. Lett. 2012; 14: 768
    • 7d Jefferies LR. Cook SP. Org. Lett. 2014; 16: 2026
    • 7e Shibuya R. Lin L. Nakahara Y. Mashima K. Ohshima T. Angew. Chem. Int. Ed. 2014; 53: 4377
    • 7f Huo X. Yang G. Liu D. Liu Y. Gridnev ID. Zhang W. Angew. Chem. Int. Ed. 2014; 53: 6776
  • 8 For a hydrogen-borrowing strategy, see: Emayavaramban B. Roy M. Sundararaju B. Chem. Eur. J. 2016; 22: 3952
  • 9 For the use of cyclopentanone as an ‘electron-pair donor’ to stabilize cationic intermediates, see: Stopka T. Niggemann M. Org. Lett. 2015; 17: 1437
    • 10a Spano V. Pennati M. Parrino B. Carbone A. Montalbano A. Cilibrasi V. Zuco V. Lopergolo A. Cominetti D. Diana P. Cirrincione G. Barraja P. Zaffaroni N. J. Med. Chem. 2016; 59: 7223
    • 10b Duvvuru D. Betzer J.-F. Retailleau P. Frison G. Marinetti A. Adv. Synth. Catal. 2011; 353: 483
    • 10c Li Y.-J. Huang H.-M. Dong H.-Q. Jia J.-H. Han L. Ye Q. Gao J.-R. J. Org. Chem. 2013; 78: 9424; and references cited therein
  • 11 Lee HS. Kim JM. Kim JN. Tetrahedron Lett. 2007; 48: 4119
    • 12a Robiette R. J. Org. Chem. 2006; 71: 2726
    • 12b Gayon E. Debleds O. Nicouleau M. Lamaty F. van der Lee A. Vrancken E. Campagne J.-M. J. Org. Chem. 2010; 75: 6050

      For the synthesis of cyclic MBH adducts see:
    • 13a Rezgui F. El Gaied MM. Tetrahedron Lett. 1998; 39: 5965
    • 13b Gatri R. El Gaied MM. Tetrahedron Lett. 2002; 43: 7835

    • For the synthesis of acyclic MBH adducts see:
    • 13c Ben Kraïem J. Ben Ayed T. Amri H. Tetrahedron Lett. 2006; 47: 7077
  • 14 The isolated yield of 3 is dramatically lowered by the use of Fe(OTf)3 instead of Fe(acac)3, due to the competitive formation of transesterification products.