Synthesis 2018; 50(04): 760-763
DOI: 10.1055/s-0036-1589142
psp
© Georg Thieme Verlag Stuttgart · New York

A Practical Three-Step Synthesis of Vinylferrocene

Comenius University in Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry, Mlynska dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia   Email: radovan.sebesta@uniba.sk
,
Brigita Mudráková
Comenius University in Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry, Mlynska dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia   Email: radovan.sebesta@uniba.sk
,
Comenius University in Bratislava, Faculty of Natural Sciences, Department of Organic Chemistry, Mlynska dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia   Email: radovan.sebesta@uniba.sk
› Author Affiliations
This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0321-12.
Further Information

Publication History

Received: 05 October 2017

Accepted after revision: 30 October 2017

Publication Date:
11 December 2017 (online)


Abstract

An improved, short and efficient synthesis of vinylferrocene is reported. This three-step synthesis includes Friedel–Crafts acylation, reduction, and a one-pot mesylation/elimination step to afford the target compound in 62% yield over three steps.

Supporting Information

 
  • References

  • 1 Togni A. Hayashi T. Ferrocenes . Wiley-VCH; Weinheim: 1995
  • 2 Štepnička P. Ferrocenes: Ligands, Materials and Biomolecules. Wiley; Chichester: 2008
  • 3 Dai L.-X. Hou X.-L. Chiral Ferrocenes in Asymmetric Catalysis . Wiley-VCH; Weinheim: 2010
  • 4 Amatore C. Gazard S. Maisonhaute E. Pebay C. Schöllhorn B. Syssa-Magalé J.-L. Wadhawan J. Eur. J. Inorg. Chem. 2007; 4035
  • 5 Kowalski K. Koceva-Chyła A. Szczupak Ł. Hikisz P. Bernasińska J. Rajnisz A. Solecka J. Therrien B. J. Organomet. Chem. 2013; 741–742: 153
  • 6 Suárez-Meneses JV. Bonilla-Reyes E. Blé-González EA. Ortega-Alfaro MC. Toscano RA. Cordero-Vargas A. López-Cortés JG. Tetrahedron 2014; 70: 1422
  • 7 Bolisetty MN. K. P. Li C.-T. Thomas KR. J. Bodedla GB. Ho K.-C. Tetrahedron 2015; 71: 4203
  • 8 Baartzes N. Stringer T. Seldon R. Warner DF. de Kock C. Smith PJ. Smith GS. J. Organomet. Chem. 2016; 809: 79
  • 9 Stringer T. De Kock C. Guzgay H. Okombo J. Liu J. Kanetake S. Kim J. Tam C. Cheng LW. Smith PJ. Hendricks DT. Land KM. Egan TJ. Smith GS. Dalton Trans. 2016; 13415
  • 10 Lai H.-W. Liu Z.-Q. Eur. J. Med. Chem. 2014; 81: 227
  • 11 Wiles AA. Zhang X. Fitzpatrick B. Long D.-L. Macgregor SA. Cooke G. Dalton Trans. 2016; 7220
  • 12 Arimoto FS. Haven AC. J. Am. Chem. Soc. 1955; 77: 6295
  • 13 Schlögl K. Mohar A. Naturwissenschaften 1961; 48: 376
  • 14 Buell GR. McEwen WE. Kleinberg J. J. Am. Chem. Soc. 1962; 84: 40
  • 15 Rausch MD. Siegel A. J. Organomet. Chem. 1968; 11: 317
  • 16 Shi R. Wang H. Tang P. Bin Y. Front. Chem. Sci. Eng. 2014; 8: 171
  • 17 Carberry J. Irvin JA. Glatzhofer DT. Nicholas KM. Neef CJ. React. Funct. Polym. 2013; 73: 730
  • 18 Singh J. Ghosh S. Deb M. Elias AJ. J. Organomet. Chem. 2016; 818: 85
  • 19 Zhu S. Niljianskul N. Buchwald SL. J. Am. Chem. Soc. 2013; 135: 15746
  • 20 Graham PJ. Lindsey RV. Parshall GW. Peterson ML. Whitman GM. J. Am. Chem. Soc. 1957; 79: 3416
  • 21 Neshvad G. Roberts RM. G. Silver J. J. Organomet. Chem. 1982; 236: 237
  • 22 Hill EA. Gross ML. Stasiewicz M. Manion M. J. Am. Chem. Soc. 1969; 91: 7381
  • 23 Berman AM. Johnson JS. J. Org. Chem. 2006; 71: 219