Synthesis 2018; 50(06): 1350-1358
DOI: 10.1055/s-0036-1589154
paper
© Georg Thieme Verlag Stuttgart · New York

Direct Synthesis of 6H-Chromeno[3,4-b]quinolin-6-ol Derivatives from Substituted 3-Nitro-2H-chromenes and 2-Nitrobenzaldehydes Mediated by Fe/AcOH System

Xushun Qing
School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. of China   Email: wangcd@yzu.edu.cn
,
Ting Wang
School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. of China   Email: wangcd@yzu.edu.cn
,
Chenlu Dai
School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. of China   Email: wangcd@yzu.edu.cn
,
Zhenjie Su
School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. of China   Email: wangcd@yzu.edu.cn
,
School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. of China   Email: wangcd@yzu.edu.cn
› Author Affiliations
National Natural Science Foundation of China (NNSFC 21173181). The project was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and Top-notch Academic Programs Project of Jiangsu Higher Education Institutions.
Further Information

Publication History

Received: 18 October 2017

Accepted after revision: 24 November 2017

Publication Date:
20 December 2017 (online)


Abstract

An efficient iron/acetic acid system-mediated reductive cyclization reaction of substituted 2-aryl-3-nitro-2H-chromenes with substituted 2-nitrobenzaldehydes for the synthesis of 6-aryl-6H-chromeno[3,4-b]quinolines was developed. This reaction involves the sequential reduction, hydrolysis, aldol condensation, intramolecular addition, and the nucleophilic addition of substituted 2-aryl-3-nitro-2H-chromenes with substituted 2-nitrobenzaldehydes to give the corresponding 6H-chromeno[3,4-b]quinolines. This transformation provides a straightforward synthetic protocol for constructing substituted 6H-chromeno[3,4-b]quinoline derivatives. The structures of three typical products were confirmed by X-ray crystallography.

Supporting Information

 
  • References

  • 1 Murray DH. Mendez J. Brown SA. The Natural Coumarins: Occurrence, Chemistry and Biochemistry . Wiley; New York: 1982
    • 2a O’Kennedy R. Thornes RD. Coumarins: Biology, Applications and Mode of Action . Wiley; Chichester: 1997
    • 2b Fylaktakidou KC. Hadjipavlou-Litina DJ. Litinas KE. Nicolaides DN. Curr. Pharm. Des. 2004; 10: 3813
    • 2c Zhang W. Pugh G. Tetrahedron Lett. 2001; 42: 5613
    • 2d Prust EE. Carlson EJ. Dahl BJ. Tetrahedron Lett. 2012; 53: 6433
    • 2e He Y. Zhang X. Cui L. Wang J. Fan X. Green Chem. 2012; 14: 3429
    • 2f Zhou J. Han P. Xu Y.-M. Zhang T. Du Z.-T. Heterocycles 2013; 87: 1889
    • 2g Zhang Z. Gao Y. Liu Y. Li J. Xie H. Li H. Wang W. Org. Lett. 2015; 17: 5492
    • 3a Zhang J. Shi D. Zhang H. Xu Z. Bao H. Jin H. Liu Y. Tetrahedron 2017; 73: 154
    • 3b Tibrewal N. Pahari P. Wang G. Kharel MK. Morris C. Downey T. Hou Y. Bugni TS. Rohr J. J. Am. Chem. Soc. 2012; 134: 18181
    • 3c Koch K. Podlech J. Pfeiffer E. Metzler M. J. Org. Chem. 2005; 70: 3275
    • 3d Mao Z. Sun W. Fu L. Luo H. Lai D. Zhou L. Molecules 2014; 19: 5088
    • 3e Gambari R. Lampronti I. Bianchi N. Zuccato C. Viola G. Vedaldi D. DallÁcqua F. Top. Heterocycl. Chem. 2007; 9: 265
    • 3f Santana L. Uriarte E. Roleira F. Milhazes N. Borges F. Curr. Med. Chem. 2004; 11: 3239
    • 3g Li Q. Jiang J. Fan A. Cui Y. Jia Y. Org. Lett. 2011; 13: 312
    • 3h Handy ST. Zhang Y. Org. Prep. Proced. Int. 2005; 37: 411
    • 3i Bailly C. Curr. Med. Chem.: Anti-Cancer Agents 2004; 4: 363
    • 3j Marco E. Laine W. Tardy C. Lansiaux A. Iwao M. Ishibashi F. Bailly C. Gago F. J. Med. Chem. 2005; 48: 3796
    • 3k Facompre M. Tardy C. Bal-Mahieu C. Colson P. Perez C. Manzanares I. Cuevas C. Bailly C. Cancer Res. 2003; 63: 7392
    • 3l Harvey RG. Cortez C. Ananthanarayan TP. Schmolka S. J. Org. Chem. 1988; 53: 3936
    • 3m Vanhuyse M. Kluza J. Tardy C. Otero G. Cuevas C. Bailly C. Lansiaux A. Cancer Lett. 2005; 221: 165
    • 4a Wang Y. Qiu Z. Zhou B. Liu C. Ruan J. Yan Q. Liao J. Zhu F. Toxicol. In Vitro 2015; 29: 1107
    • 4b Rappa G. Shyam K. Lorico A. Fodstad O. Sartorelli AC. Oncol. Res. 2000; 12: 113
    • 4c Dong Y. Shi Q. Pai H.-C. Peng C.-Y. Pan S.-L. Teng C.-M. Nakagawa-Goto K. Yu D. Liu Y.-N. Wu P.-C. Bastow KF. Morris-Natschke SL. Brossi A. Lang J.-Y. Hsu JL. Hung M.-C. Lee P. Lee K.-H. J. Med. Chem. 2010; 53: 2299
    • 4d Marcu MG. Schulte TW. Neckers L. J. Natl. Cancer Inst. 2000; 92: 242
  • 5 Kim N. Sohn M.-J. Koshino H. Kim E.-H. Kim W-G. Bioorg. Med. Chem. Lett. 2014; 24: 83
    • 6a Rodighiero G. Antonello C. Boll. Chim. Farm. 1958; 97: 592
    • 6b Ishiguro K. Yamaki M. Kashihara M. Takagi S. Isoi K. Phytochemistry 1990; 29: 1010
  • 7 Melagraki G. Afantitis A. Igglessi-Markopoulou O. Detsi A. Koufaki M. Kontogiorgis C. Hadjipavlou-Litina DJ. Eur. J. Med. Chem. 2009; 44: 3020
  • 8 Conforti F. Marrelli M. Menichini F. Bonesi M. Statti G. Provenzano E. Menichini F. Curr. Drug Ther. 2009; 4: 38
  • 9 Ryu YB. Kim JH. Park S.-J. Chang JS. Rho M.-C. Bae K.-H. Park KH. Lee WS. Bioorg. Med. Chem. Lett. 2010; 20: 971
    • 10a Veerepalli P. Vijayakumar V. Sarveswari S. Inventi Impact: Med. Chem. 2012; 2: 77
    • 10b Veerepalli P. Vijayakumar V. Sarveswari S. J. Pharm. Res. 2012; 5: 1027
  • 11 Kulkarni YD. Srivastava D. Bishnoi A. Dua PR. J. Indian Chem. Soc. 1996; 73: 173
    • 12a Hammond PR. Atkins RL. J. Heterocycl. Chem. 1978; 12: 1061
    • 12b Atkins RL. Bliss DE. J. Org. Chem. 1978; 43: 1975
    • 12c Grandberg II. Denisov LK. Popova OA. Khim. Geterotsikl. Soedin. 1987; 2: 147
    • 13a Shen YM. Grampp G. Leesakul N. Hu HW. Xu JH. Eur. J. Org. Chem. 2007; 3718
    • 13b Fletcher SP. Dumur F. Pollard MM. Feringa BL. Science 2005; 310: 80
    • 13c Yang C.-W. Hsia T.-H. Chen C.-C. Lai C.-K. Liu R.-S. Org. Lett. 2008; 10: 4069
    • 14a Harayama T. Yasuda H. Heterocycles 1997; 46: 61
    • 14b Crich D. Hwang J.-T. J. Org. Chem. 1998; 63: 2765
    • 14c Sun C.-L. Gu Y.-F. Huang W.-P. Shi Z.-J. Chem. Commun. 2011; 47: 9813
    • 15a Luo S. Luo F.-X. Zhang X.-S. Shi Z.-J. Angew. Chem. Int. Ed. 2013; 52: 10598
    • 15b Inamoto K. Kadokawa J. Kondo Y. Org. Lett. 2013; 15: 3962
    • 15c Lee T.-H. Jayakumar J. Cheng C.-H. Chuang S.-C. Chem. Commun. 2013; 49: 11797
    • 15d Rao YJ. Reddy EP. Thirupathi G. Goud EY. Sowjanya M. Hemasri Y. Russ. J. Gen. Chem. 2016; 86: 1730
    • 15e Cueva JP. Giorgioni G. Grubbs RA. Chemel BR. Watts VJ. Nichols DE. J. Med. Chem. 2006; 49: 6848
  • 16 Markey MD. Fu Y. Kelly TR. Org. Lett. 2007; 9: 3255
    • 17a Morris AL. C. Jackson YA. Heterocycles 2010; 81: 371
    • 17b Pave G. Synlett 2003; 987
    • 17c Prasad KR. Darbarwar M. Org. Prep. Proced. Int. 1995; 27: 547
    • 18a Kudale AA. Kendall J. Miller DO. Collins JL. Bodwell GJ. J. Org. Chem. 2008; 73: 8437
    • 18b Belal M. Das DK. Khan AT. Synthesis 2015; 47: 1109
    • 19a Chen Z. Hu L. Peng F. Synlett 2016; 27: 1888
    • 19b Khan AT. Das DK. Islam K. Das P. Tetrahedron Lett. 2012; 53: 6418
    • 19c Wu H. Wan Y. Chen X.-M. Chen C.-F. Lu L.-L. Xin H.-Q. Xu H.-H. Pang L.-L. Ma R. Yuea C.-H. J. Heterocycl. Chem. 2009; 46: 702
  • 21 Klívar J. Jančařík A. Šaman D. Pohl R. Fiedler P. Bednárová L. Starý I. Stará IG. Chem. Eur. J. 2016; 22: 14401
  • 22 Rivkin A. Adams B. Tetrahedron Lett. 2006; 47: 2395
    • 23a Korotaev VY. Barkov AY. Sosnovskikh VY. Tetrahedron Lett. 2013; 54: 3091
    • 23b Korotaev VY. Barkov AY. Kutyashev IB. Kotovich IV. Ezhikova MA. Kodess MI. Sosnovskikh VY. Tetrahedron 2015; 71: 2658
    • 24a Trivedi K. Sethna S. J. Org. Chem. 1960; 25: 1817
    • 24b Chakravarti D. Dutta SP. Mitra AK. Curr. Sci. 1965; 177
  • 25 Khan MA. Lucia M. Bol. Soc. Quim. Peru 1979; 45: 42
    • 26a Bhanja C. Jena S. Nayak S. Mohapatra S. Beilstein J. Org. Chem. 2012; 8: 1668
    • 26b Korotaev VY. Kutyashev IB. Sosnovskikh VY. Kodess MI. Mendeleev Commun. 2007; 17: 52
    • 26c Korotaev VY. Sosnovskikh VY. Barabanov MA. Yasnova ES. Ezhikova MA. Kodess MI. Slepukhin PA. Tetrahedron 2010; 66: 1404
    • 26d Korotaev VY. Sosnovskikh VY. Barkov AY. Slepukhin PA. Ezhikova MA. Kodess MI. Shklyaev V. Tetrahedron 2011; 67: 8685
    • 27a Xue S. Yao J. Liu J. Wang L. Liu X. Wang C. RSC Adv. 2016; 6: 1700
    • 27b Zhou Z. Liu H. Li Y. Liu J. Li Y. Liu J. Yao J. Wang C. ACS Comb. Sci. 2013; 15: 363
  • 28 Li D.-K. Cai Q. Zhou R.-R. Wu Y.-D. Wu A.-X. ChemistrySelect 2017; 2: 1048
    • 29a Bankova VS. Popov SS. Marekov NL. J. Nat. Prod. 1983; 46: 471
    • 29b Hao B. Caulfield JC. Hamilton ML. Pickett JA. Midega CA. O. Khan ZR. Wang JR. Hooper AM. Org. Biomol. Chem. 2015; 13: 11663
    • 29c Hao B. Caulfield JC. Hamilton ML. Pickett JA. Midega CA. O. Khan ZR. Wang J. Hooper AM. Phytochemistry 2016; 125: 73
    • 29d Iaroshenko VO. Savych I. Villinger A. Sosnovskikhc VY. Langera P. Org. Biomol. Chem. 2012; 10: 9344
  • 30 CCDC 1553636 (3a), 1555046 (3i), and 1552366 (4f) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 31 Quideau S. Jourdes M. Lefeuvre D. Montaudon D. Saucier C. Glories Y. Pardon P. Pourquier P. Chem. Eur. J. 2005; 11: 6503
    • 32a Korotaev VY. Kutyashev IB. Sosnovskikh VY. Heteroat. Chem. 2005; 16: 492
    • 32b Rahmani-Nezhad S. Safavi M. Pordeli M. Ardestani SK. Khosravani L. Pourshojaei Y. Mahdavi M. Emami S. Foroumadi A. Shafiee A. Eur. J. Med. Chem. 2014; 86: 562