Synlett 2018; 29(06): 825-829
DOI: 10.1055/s-0036-1589164
letter
© Georg Thieme Verlag Stuttgart · New York

Diastereoselective Synthesis of Functionalized Indolines Using in situ Generated Allyl Boronic Species

José A. Forni
a   Institute of Chemistry, University of Campinas, PO Box 6154, Zip Code 13084-971, Campinas, SP, Brazil   Email: juliopastre@iqm.unicamp.br
,
Shing-Hing Lau
b   Innovative Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK   URL: http://www.leygroup.ch.cam.ac.uk
,
Jian-Siang Poh
b   Innovative Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK   URL: http://www.leygroup.ch.cam.ac.uk
,
Claudio Battilocchio
b   Innovative Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK   URL: http://www.leygroup.ch.cam.ac.uk
,
Steven V. Ley*
b   Innovative Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK   URL: http://www.leygroup.ch.cam.ac.uk
,
a   Institute of Chemistry, University of Campinas, PO Box 6154, Zip Code 13084-971, Campinas, SP, Brazil   Email: juliopastre@iqm.unicamp.br
› Author Affiliations
The authors gratefully acknowledge financial support from the São Paulo Research Foundation – FAPESP (J.C.P., awards No. 2014/26378-2 and 2014/25770-6 and J.A.F. award No. 2016/05630-0), CNPq (J.C.P., award No. 453862/2014-4), Croucher Foundation (S.-H. Lau), and the EPSRC (SVL, grants EP/K009494/1, EP/M004120/1 and EP/K039520/1).
Further Information

Publication History

Received: 27 October 2017

Accepted after revision: 06 December 2017

Publication Date:
22 December 2017 (online)


Abstract

A new three-component coupling protocol for preparation of functionalized indolines, with a high degree of diastereoselectivity, has been developed. The protocol is based on the in situ homologation of vinyl boronic acids to allylboronic acids, using TMSCHN2 as carbon source, and subsequent coupling reaction with indoles to give 2-substituted indolines. The scope of the method was exemplified in several examples.

Supporting Information

 
  • References and Notes

  • 1 Dinner C. Szabó KJ. J. Am. Chem. Soc 2017; 139: 2

    • For representative examples, see:
    • 2a Raducan M. Alam R. Szabó KJ. Angew. Chem. Int. Ed. 2012; 51: 13050
    • 2b Dutheuil G. Selander N. Szabó KJ. Aggarwal VK. Synthesis 2008; 2293
    • 2c Chang K.-J. Rayabarapu DK. Yang F.-Y. Cheng C.-H. J. Am. Chem. Soc. 2005; 127: 126
    • 2d Kabalka GW. Venkatalah B. Dong G. J. Org. Chem. 2004; 69: 5807
    • 2e Edelstein EK. Sheila N. Morken JP. J. Am. Chem. Soc. 2017; 139: 5027

      For representative examples, see:
    • 3a Zhang P. Roundtree IA. Morken JP. Org. Lett. 2012; 14: 1363
    • 3b Sumida Y. Yorimitsu H. Oshima K. Org Lett. 2008; 10: 4677
    • 3c Crotti S. Bertonilli F. Macchia F. Pineschi M. Org. Lett. 2009; 11: 3762
    • 3d Cho HY. Morken JP. J. Am. Chem. Soc. 2010; 132: 7576
    • 4a Atack TC. Lecker RM. Cook SP. J. Am. Chem. Soc. 2014; 136: 9521
    • 4b Wu JY. Moreau B. Ritter T. J. Am. Chem. Soc. 2009; 131: 12915

      For representative examples, see:
    • 5a Ito H. Kawakami C. Kawakami C. Sawamura M. J. Am. Chem. Soc. 2005; 127: 16034
    • 5b Ito H. Ito S. Sasaki Y. Matsuura K. Sawamura M. J. Am. Chem. Soc. 2007; 129: 14856
    • 5c Guzman-Martinez A. Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 10634
    • 5d Sasaki Y. Zhong C. Sawamura M. Ito H. J. Am. Chem. Soc. 2010; 132: 1226
    • 5e Ito H. Ito S. Sasaki S. Matsura K. Sawamura M. J. Am. Chem. Soc. 2007; 129: 14856
    • 5f Carosi L. Hall DG. Angew. Chem. Int. Ed. 2007; 46: 5913
  • 6 Heleare R. Carreaux F. Carboni B. J. Org. Chem. 2013; 78: 6786
    • 7a Miralles N. Alam R. Szabó KJ. Fernández E. Angew. Chem. Int. Ed. 2016; 55: 4303
    • 7b Poh J.-S. Lau J.-S. Dykes IG. Tran DN. Battilocchio C. Ley SV. Chem. Sci. 2016; 7: 6803
    • 7c Battilocchio C. Feist F. Hafner A. Simon M. Tran DN. Allwood DM. Blakemore DC. Ley SV. Nat. Chem. 2016; 8: 360
    • 7d Bomio C. Kabeshov MA. Lit AR. Lau S.-H. Ehlert J. Battilocchio C. Ley SV. Chem. Sci. 2017; 8: 6071
  • 8 Cao W.-B. Xu X.-P. Ji S.-J. Org. Biomol. Chem. 2017; 15: 1651
  • 9 Nowrouzi F. Batey RA. Angew. Chem. Int. Ed. 2012; 52: 892
  • 10 Alam R. Das A. Huang G. Eriksson L. Himo F. Szabó KJ. Chem. Sci. 2014; 5: 2732
  • 11 Alam R. Diner C. Jonker S. Eriksson L. Szabó KJ. Angew. Chem. Int. Ed. 2016; 55: 14417
  • 12 Kühnel E. Laffan DD. P. Lloyd-Jones GC. del CampoT. M. Shepperson IR. Slaughter JL. Angew. Chem. Int. Ed. 2007; 46: 7075
  • 13 Huang G. Diner C. Szabó KJ. Himo F. Org. Lett. 2017; 19: 5904
    • 14a General Procedure for Homoallylation of IndolinesA microwave vial was charged with the indole (0.25 mmol, 1 equiv) and the corresponding vinyl boronic acid (0.625 mmol, 2.5 equiv). The flask was flushed with argon and sealed. The degassed solvent (2.5 mL) was added, followed by the addition of water (3 mmol, 1.2 equiv). Next, a 2 M TMSCHN2 solution in n-hexanes was added (1.25 mmol, 5 equiv) under vigorous stirring. The final mixture was heated at 60 °C for 8 h in a Biotage Initiator microwave reactor, or in a sand-bath at 60 °C when specified. The reactions where monitored by TLC analysis and quenched in methanol when the reaction was completed or when no more conversion was observed. The volatiles were removed under reduced pressure and the residue obtained was purified by flash column chromatography using petroleum ether/ethyl acetate.Characterization Data for Compound 4ePrepared according to the general procedure under conventional heating on a sand-bath in 77% yield (0.19 mmol), obtained as a yellow oil. 1H NMR (600 MHz, CDCl3): δ = 6.71 (d, J = 2.3 Hz, 1 H), 6.56 (dd, J = 8.6, 2.6 Hz, 1 H), 6.52 (d, J = 8.2 Hz, 1 H), 5.70 (dt, J = 16.9, 10.1 Hz, 1 H), 5.17 (dd, J = 10.2, 2.3 Hz, 1 H), 5.07 (dd, J = 17.1, 2.0 Hz, 1 H), 3.91 (ddd, J = 9.0, 8.6, 8.2 Hz, 1 H), 3.73 (s, 3 H), 3.03 (dd, J = 15.5, 8.2 Hz, 1 H), 2.81 (dd, J = 15.6, 9.0 Hz, 1 H), 2.00 (ddd, J = 10.1, 8.6, 4.9 Hz, 1 H), 1.64–1.78 (m, 4 H), 1.57 (d, J = 12.8 Hz, 1 H), 1.45–1.52 (m, 1 H), 1.23–1.32 (m, 1 H), 1.17–1.23 (m, 1 H), 1.07–1.16 (m, 2 H), 1.01 (qd, J = 12.4, 3.5 Hz, 1 H). 13C NMR (151 MHz, CDCl3): δ = 153.1, 144.6, 137.6, 130.6, 118.1, 111.8, 111.6, 109.4, 60.6, 55.9, 55.5, 38.7, 34.6, 32.1, 28.3, 26.6, 26.6, 26.5. IR (ATR): 3368 (w), 2923 (s), 2851 (s), 1635 (w), 1599 (m), 1491 (s), 1465 (m), 1448 (m), 1433 (m), 1295 (w), 1233 (s, br), 1138 (s), 1034 (s), 1000 (m), 992 (w), 912 (m), 886 (w), 832 (m), 797 (m), 729 (m) cm–1. HRMS (ESI+): m/z calcd for C18H28N1O1 + [M + H]+: 272.2018; found: 272.2014.Characterization Data for Compound 4fPrepared according to the general procedure under conventional heating on a sand-bath in 74% yield (0.18 mmol), obtained as a light-yellow oil. 1H NMR (600 MHz, CDCl3): δ = 6.69–6.73 (m, 1 H), 6.57 (dd, J = 8.2, 2.6 Hz, 1 H), 6.52 (d, J = 8.2 Hz, 1 H), 5.58 (dt, J = 17.1, 9.9 Hz, 1 H), 5.14 (dd, J = 10.4, 2.1 Hz, 1 H), 5.10 (dd, J = 17.3, 1.8 Hz, 1 H), 3.73 (s, 3 H), 3.64 (q, J = 8.4 Hz, 1 H), 3.05 (dd, J = 15.5, 8.6 Hz, 1 H), 2.79 (dd, J = 15.5, 8.6 Hz, 1 H), 2.09–2.16 (m, 1 H), 1.36–1.50 (m, 2 H), 1.19–1.29 (m, 2 H), 0.86–0.94 (m, 3 H). 13C NMR (151 MHz, CDCl3): δ = 152.9, 144.3, 139.9, 130.2, 117.1, 111.6, 111.4, 109.1, 63.3, 55.7, 49.6, 34.4, 33.3, 20.1, 13.9. IR (ATR): 3365 (w), 3074 (w), 2955 (m), 2930 (m), 2871 (m), 2831 (w), 1638 (w), 1599 (m), 1490 (s), 1465 (m), 1453 (s), 1433 (m), 1377 (w), 1293 (m), 1233 (s, br), 1138 (s), 1033 (s), 998 (w), 913 (m), 861 (w), 841 (m), 797 (m), 734 (m), 676 (m) cm–1. HRMS (ESI+): m/z calcd for C18H28N1O1 + [M + H]+: 274.2172; found: 274.2171.