Synthesis 2017; 49(05): 1065-1072
DOI: 10.1055/s-0036-1589402
paper
© Georg Thieme Verlag Stuttgart · New York

Redox Reaction: A New Route for the Synthesis of Water-Miscible Imidazolium Ionic Liquids

Wenxiu Li
Shenyang University of Chemical Technology, Shenyang, 110142, P. R. of China   Email: zhzhgang@syuct.edu.cn
,
Shangwu Dai
Shenyang University of Chemical Technology, Shenyang, 110142, P. R. of China   Email: zhzhgang@syuct.edu.cn
,
Dong Li
Shenyang University of Chemical Technology, Shenyang, 110142, P. R. of China   Email: zhzhgang@syuct.edu.cn
,
Qinqin Zhang
Shenyang University of Chemical Technology, Shenyang, 110142, P. R. of China   Email: zhzhgang@syuct.edu.cn
,
Hongtao Fan
Shenyang University of Chemical Technology, Shenyang, 110142, P. R. of China   Email: zhzhgang@syuct.edu.cn
,
Tao Zhang
Shenyang University of Chemical Technology, Shenyang, 110142, P. R. of China   Email: zhzhgang@syuct.edu.cn
,
Zhigang Zhang*
Shenyang University of Chemical Technology, Shenyang, 110142, P. R. of China   Email: zhzhgang@syuct.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 23 September 2016

Accepted after revision: 29 September 2016

Publication Date:
16 November 2016 (online)


Abstract

A novel chemical redox route was developed for the preparation of water-miscible imidazolium ionic liquids (ILs). In this method, the reaction between 1-alkyl-3-methylimidazolium bromides or 3-butyl-1-phenylimidazolium bromide and the appropriate acid reactant was promoted by the redox reaction between the bromide ion and aqueous hydrogen peroxide, with hex-1-ene as both solvent and bromine scavenger. The residual bromide ion and water contents of the prepared ILs were determined by ion chromatography and the Karl–Fischer test, respectively. This method not only produces water-miscible ILs in high purity and high yield, but also simplifies the reaction conditions in comparison with previous routes.

 
  • References

    • 1a Kosmulski M, Gustafsson J, Rosenholm JB. Thermochim. Acta. 2004; 412: 47
    • 1b Welton T. Chem. Rev. 1999; 99: 2071
    • 1c Bonhôte P, Dias A.-P, Papageorgiou N, Kalyanasundaram K, Grätzel M. Inorg. Chem. 1996; 35: 1168
    • 1d Wasserscheid P, Keim W. Angew. Chem. Int. Ed. 2000; 39: 3772
    • 1e Widegren JA, Wang Y.-M, Henderson WA, Magee JW. J. Phys. Chem. B 2007; 111: 8959
  • 2 Gao J, Liu J, Li B, Liu W, Xie Y, Xin Y, Yin Y, Jie X, Gu J, Zou Z. New J. Chem. 2011; 35: 1661
    • 3a Krossing I, Slattery JM, Daguenet C, Dyson PJ, Oleinikova A, Weingärtner H. J. Am. Chem. Soc. 2006; 128: 13427
    • 3b Blanchard LA, Hancu D, Beckman EJ, Brennecke JF. Nature 1999; 399: 28
    • 4a Stark A, MacLean BL, Singer RD. J. Chem. Soc., Dalton Trans. 1999; 63
    • 4b Ranu BC, Banerjee S, Jana R. Tetrahedron 2007; 63: 776
    • 5a Yang W, Cang H, Tang Y, Wang J, Shi Y. J. Appl. Electrochem. 2008; 38: 537
    • 5b Electrodeposition from Ionic Liquids . Endres F, MacFarlane DR, Abbott AP. Wiley-VCH; Weinheim: 2008
    • 5c Chemistry of Nonaqueous Solvents: Current Progress . Mamantov G, Popov AI. VCH; Weinheim: 1994
    • 6a Iranpoor N, Firouzabadi H, Azadi R. Tetrahedron Lett. 2006; 47: 5531
    • 6b Khadilkar BM, Rebeiro GL. Org. Process Res. Dev. 2002; 6: 826
    • 6c Fukumoto K, Ohno H. Angew. Chem. Int. Ed. 2007; 46: 1852
    • 7a Cao Y, Zhang J, Bai Y, Li R, Zakeeruddin SM, Grätzel M, Wang P. J. Phys. Chem. C. 2008; 112: 13775
    • 7b Kuang D, Uchida S, Humphry-Baker R, Zakeeruddin SM, Grätzel M. Angew. Chem. Int. Ed. 2008; 47: 1923
    • 7c Yamanaka N, Kawano R, Kubo W, Kitamura T, Wada Y, Watanabe M, Yanagida S. Chem. Commun. 2005; 740
  • 8 Swatloski RP, Holbrey JD, Rogers RD. Green Chem. 2003; 5: 361
  • 9 Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD. J. Am. Chem. Soc. 2003; 125: 6632
    • 10a Himmler S, Hörmann S, van Hal R, Schulz PS, Wasserscheid P. Green Chem. 2006; 8: 887
    • 10b Kuhlmann E, Himmler S, Giebelhaus H, Wasserscheid P. Green Chem. 2007; 9: 233
    • 10c Leclercq L, Suisse I, Nowogrocki G, Agbossou-Niedercorn F. Green Chem. 2007; 9: 1097
    • 10d Sachnov SJ, Schulz PS, Wasserscheid P. Chem. Commun. 2011; 11234
    • 10e Holbrey JD, Rogers RD, Shukla SS, Wilfred CD. Green Chem. 2010; 12: 407
    • 10f Kim DJ, Oh KH, Park JK. Green Chem. 2014; 16: 4098
    • 11a Cassol CC, Ebeling G, Ferrera B, Dupont J. Adv. Synth. Catal. 2006; 348: 243
    • 11b Wilkes JS, Zaworotko MJ. J. Chem. Soc., Chem. Commun. 1992; 65
    • 11c Pringle JM, Golding J, Forsyth GB, Deacon GB, Forsyth M, MacFarlane DR. J. Mater. Chem. 2002; 12: 3475
    • 11d Himmler S, Konig A, Wasserscheid P. Green Chem. 2007; 9: 935
    • 11e Srour H, Rouault H, Santini CC, Chauvin Y. Green Chem. 2013; 15: 1341
    • 11f Suarez PA. Z, Einloft S, Dullius JE. L, de Souza RF, Dupont J. J. Chim. Phys. Phys.-Chim. Biol. 1998; 95: 1626
    • 11g Fuller J, Carlin RT, Osteryoung RA. J. Electrochem. Soc. 1997; 144: 3881
    • 11h Huddleston JG, Willauer HD, Swatloski RP, Visser AE, Rogers RD. Chem. Commun. 1998; 1765
    • 11i Ye H, Huang J, Xu JJ, Kodiweera NK. A. C, Jayakody JR. P, Greenbaum SG. J. Power Sources 2008; 178: 651
    • 12a Dyson PJ, Ellis DJ, Welton T, Parker DG. Chem. Commun. 1999; 25
    • 12b Dyson PJ. Transition Met. Chem. (Dordrecht, Neth.) 2002; 27: 353
    • 12c Gallo V, Mastrorilli P, Nobile CF, Romanazzi G, Suranna GP. J. Chem. Soc., Dalton Trans. 2002; 4339
    • 12d Klingshirn MA, Broker GA, Holbrey JD, Shaughnessy KH, Rogers RD. Chem. Commun. 2002; 1394
  • 13 Moulton R. US 20030094380, 2003
  • 14 Williams HP, Herrington BT. J. Chem. Educ. 1990; 67: 525
  • 15 Pereira SM, Savage GP, Simpson GW. Synth. Commun. 1995; 25: 1023
  • 16 Nockemann P, Binnemans K, Driesen K. Chem. Phys. Lett. 2005; 415: 131
  • 17 Avent AG, Chalconer PA, Day MP, Seddon KR, Welton T. J. Chem. Soc., Dalton Trans. 1994; 3405
  • 18 Lungwitz R, Spange S. New J. Chem. 2008; 32: 392
  • 19 Burrell AK, Del Sesto RE, Baker SN, McCleskey TM, Baker GA. Green Chem. 2007; 9: 449
  • 20 Patil S, Deally A, Gleeson B, Müller-Bunz H, Paradisi F, Tacke M. Appl. Organomet. Chem. 2010; 24: 781
  • 21 Amanpreet S, Tilak R, Narinder S. Catal. Lett. 2015; 8: 1606
  • 22 Mizumo T, Marwanta E, Matsumi N, Ohno H. Chem. Lett. 2004; 33: 1360
  • 24 Chau D.-KN, Le H.-TN, Nguyen PT, Le TN. Green Chem. Lett. Rev. 2014; 7: 167
  • 25 Scott K, Hui W. Biochem. Eng. J. 1996; 61: 13
  • 26 Villagrán C, Deetlefs M, Pitner WR, Hardacre C. Anal. Chem. 2004; 76: 2118
  • 27 Chang CN, Cheng HB, Chao AC. Environ. Sci. Technol. 2004; 38: 1807
  • 28 The activity of bromide ion is approximately equal to its concentration in the dilute solution.
  • 29 Data are provided in the Supporting Information.
  • 30 Clough MT, Geyer K, Hunt PA, Son S, Vagt U, Welton T. Green Chem. 2015; 17: 321
  • 31 Egashira M, Yamamoto Y, Fukutake T, Yoshimoto N, Morita M. J. Fluorine Chem. 2006; 127: 1261
  • 32 Laali KK, Gettwert VJ. J. Org. Chem. 2001; 66: 35
  • 33 Ferguson JL, Holbrey JD, Ng S, Plechkova NV, Seddon KR, Tomaszowska AA, Wassell DF. Pure Appl. Chem. 2012; 84: 723
  • 34 Stolarska O, Soto A, Rodríguez H, Smiglak M. RSC Adv. 2015; 5: 22178
  • 35 Harjani JR, Farrell J, Garcia MT, Singer RD, Scammells PJ. Green Chem. 2009; 11: 821
  • 36 Brandt A, Ray MJ, To TQ, Leak DJ, Murphy RJ, Welton T. Green Chem. 2011; 13: 2489
  • 37 Kore R, Kumar TJ. D, Srivastava R. J. Mol. Catal. A: Chem. 2012; 360: 61
  • 38 Li X, Eli W, Li G. Catal. Commun. 2008; 9: 2264
  • 39 Xiao W, Wang X, Chen Q, Wu T, Wu Y, Dai L, Song C. Chem. Lett. 2010; 39: 1112
  • 40 Stracke MP, Ebeling G, Cataluña R, Dupont J. Energy Fuels 2007; 21: 1695