J. B. ERNST, S. MURATSUGU,* F. WANG, M. TADA, F. GLORIUS* (WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER, GERMANY AND NAGOYA UNIVERSITY, JAPAN) Tunable Heterogeneous Catalysis: N-Heterocyclic Carbenes as Ligands for Supported Heterogeneous Ru/K-Al $_2$ O $_3$ Catalysts to Tune Reactivity and Selectivity

J. Am. Chem. Soc. 2016, 138, 10718-10721.

Hydrogenation on NHC-Modified Ru/K-Al₂O₃ Catalysts

Selected examples:

Significance: A surface-modification method was developed for tuning the catalytic performance of ruthenium nanoparticles supported on K-doped alumina (Ru/K-Al $_2$ O $_3$) by using N-heterocyclic carbene (NHC) ligands. For example, the hydrogenation of ethynylbenzene (1) under hydrogen in the presence of unmodified Ru/K-Al $_2$ O $_3$ gave ethylcyclohexane (3) as the sole product in 95% yield, whereas the use of IMes/Ru/K-Al $_2$ O $_3$ or ICy/Ru/K-Al $_2$ O $_3$ (2 mol% ruthenium, NHC-modified Ru/K-Al $_2$ O $_3$, 3.0 equiv of the NHC based on surface ruthenium) as a catalyst under similar conditions gave ethylbenzene (2) as the sole product in 89% and 92% yield, respectively.

Comment: The catalysts were characterized by means of ¹³C solid-state NMR, Ru 3p XPS, Ru K-edge EXAFS, and TEM. The particle size of ruthenium (TEM), the oxidation state of ruthenium (XPS), and the Ru–Ru coordination number (EXAFS) remained unchanged after the surface modification. In addition, ¹³C NMR spectroscopy confirmed that the carbene carbon was directly attached to the ruthenium nanoparticles.

SYNFACTS Contributors: Yasuhiro Uozumi, Takuma Sato Synfacts 2016, 12(12), 1313 Published online: 17.11.2016 **DOI:** 10.1055/s-0036-1589442; **Reg-No.:** Y15616SF

Category Polymer-

Polymer-Supported Synthesis

Key words

N-heterocyclic carbenes

ruthenium catalysis

hydrogenation

heterogeneous catalysis

ligands

