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Dear Readers,

There are already rumors among UK-based academic 
chemists that some departments – in preparation to 
the next Research Excellence Framework (REF-2021), 
the system for assessing the quality of research in UK 
higher education institutions – are informing staff 
that there is little or no interest in considering articles 
published in journals with Impact Factors lower than 
9 or 10. Can you believe it? Well, I do. Even though – 
luckily – I haven’t received this recommendation myself 
(yet?). Because this is exactly the atmosphere we are 
breathing in our universities, and not just in the UK, 
where overzealous administrators and bureaucrats with 
backgrounds in statistics and corporate management 
have predominantly taken over our departments, 
schools and colleges. So, in the absence of any under-
standing of research and its delicate mechanisms, 
these alien university managements are increasingly 
judging our performance using metrics like impact fac-
tors and citation numbers which – insulated from their 
context – are just like lottery numbers, devoid of any 
actual meaning, let alone being scores for measuring 
the performance of researchers. I appreciate that this 
is a very complex issue, which cannot be treated with 
the necessary depth in a brief editorial like this one, 
but I would encourage you to send me your comments 
and experience by e-mail or through the SYNFORM 
website. Let’s move on from this impact factors lunacy 
for the moment, and let’s have a look at the content of 
this exciting February issue of SYNFORM. We start with 
Uchiyama’s (Japan) Ni-catalyzed Stille coupling and 
continue with Wang’s (P. R. of China) computer-assist-
ed synthesis of 3(2H)-furanones. The third contribution 
concerns a novel HPLC-purification-free synthesis of 
proteins developed by Seitz (Germany). Finally, Hu’s  
(P. R. of China) novel deoxyfluorination reagents com-

plete the issue. No impact factors, or other odd num-
bers, here. Just great chemistry.

Enjoy your reading!
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Biaryls are privileged structures that continue to attract 
enorm ous interest for their many applications as drugs and 
materials. The Stille cross-coupling reaction is one of the most 
often used methods for assembling biaryls via C–C bond for-
mation between the two aromatic rings. The classical version 
of this reaction uses aryl stannanes and aryl halides as sub-
strates, while the catalyst is a Pd complex.

Recently, the group of Professor Masanobu Uchiyama from 
The University of Tokyo (Japan) reported the first Ni-catalyzed 
Stille coupling of quaternary ammonium salts via C–N bond 
cleavage. Professor Uchiyama said: “In a process catalyzed 
by commercially available Ni(cod)2 and an imidazole ligand, 
aryl- and alkyltrimethylammonium salts [Ar/R–NMe3]+ react 
smoothly with arylstannanes in a 1:1 molar ratio to give the 
corresponding cross-coupling products in high yields with 
broad functional group compatibility, providing a highly  
efficient and practical way for constructing diverse C–C bonds 
from quaternary ammonium salts.”

With regard to the utilization of amines as electrophiles 
and their pre-activation, Professor Uchiyama pointed out that 
amine groups occur widely in natural products, and are also 
found in many pharmaceuticals, dyes, and functional mole-
cules: “A large variety of amines are commercially available, 

mostly at reasonable cost. However, transformation of the NR2 
group is generally difficult, due to the chemical inertness of 
the C–N bond. Most ammonium salts can be obtained in high 
or even quantitative yield just by treating the original amines 
with electrophiles such as RX (halides), MeOTf, etc., under 
mild conditions. In many cases, simple filtration can provide  
sufficient purity of these compounds for subsequent uses. 
Furthermore, ammonium salts can be easily stored in air at 
room temperature without any decomposition. Therefore, the 
ammonium salt is an ideal pre-activation form for an amine.”

Nowadays, in place of Pd, many other transition metals 
have been used for various types of cross-coupling reactions, 
with Ni being widely applied. However, Ni-catalyzed Stille  
couplings have been reported only rarely, with the latest case 
reaching back to 1995 (V. Percec, J.-Y. Bae, D. H. Hill J. Org. 
Chem. 1995, 60, 6895). The current work establishes a new 
and efficient protocol for using Ni compounds as the catalyst 
in Stille coupling reactions. Professor Uchiyama explained: 
“By employing a combination of experimental and computa-
tional methods, the present work also provides a comprehen-
sive reaction profile, which explains the mechanistic details 
well, especially those key issues involving: a) how C–N bond 
cleavage takes place with Ni, and b) what controls the Ni/Sn 

Stille Coupling via C–N Bond Cleavage

Nat. Commun. 2016, 7, 12937

Scheme 1
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http://dx.doi.org/10.1038/ncomms12937
http://dx.doi.org/10.1021/jo00126a047
http://dx.doi.org/10.1021/jo00126a047
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transmetalation.” He concluded: “These results should be 
help ful for understanding other related organometallic reac-
tions as well as designing new cross-coupling protocols.”

A21
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About the authors

From left: Dr. C. Wang, Prof. M. Uchiyama, Dr. D.-Y. Wang
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CO2 capture and utilization (CCU) has attracted much atten
tion during this decade in the context of green economy. Ionic  
liquids (ILs) exhibit particularly attractive properties for CCU, 
due to their tunable structures that can be harnessed for ab
sorption and activation of CO2. Recently, the group of Profes
sor Congmin Wang at Zhejiang University (P. R. of China) dis
covered that the basicity of ILs is the key to influencing the 
gas absorption capacity, such as in the case of CO2 and SO2.1 In 

addition, a moderate basicity of IL is also crucial to ensuring 
its high catalytic activity in the synthesis of alkylidene car
bonates from propargylic alcohols and atmosphericpressure 
CO2.2 Previously, the choice of base catalysts was often based 
on experience and experiment trial and error. Professor Wang 
explained: “We wanted to develop an innovative strategy to 
easily predict the best range of basicity by DFT calculations. If 
that worked, it would save more time on catalyst screening.”

Computer-Assisted Design of Ionic Liquids for Efficient Synthesis of 
3(2H)-Furanones: A Domino Reaction Triggered by CO2 

J. Am. Chem. Soc. 2016, 138, 14198–14201

Scheme 1 Hydration of diyne alcohol
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http://dx.doi.org/10.1021/jacs.6b08895
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Professor Wang continued: “The CO2triggered domino  
reaction to achieve the synthesis of 3(2H)furanones was  
selected as the model reaction (Scheme 1). There are two  
reasons for our choice of this reaction: 1) 3(2H)furanones are 
important structures in many natural products; there fore, an 
environmentally benign method of synthesizing them was 
expected to be of profound significance; 2) this reaction can 
occur without a metal catalyst, and that would make our re
search easier.”

The basicity of the catalyst is clearly important in many 
basecatalyzed reactions, while the Ka value is one of the cri
teria representing basicity. Thus, the group compared the pKa 
values of raw material and several traditional anions. “To our 

surprise, diyne alcohol showed stronger basicity than imid
azole,” said Professor Wang. He continued: “Then, inspired by 
our previous findings that CO2 could facilitate hydrogen ab
straction, we recalculated the pKa value of 1a while CO2 was 
also taken into consideration. As shown in Figure 1, the pKa  
value of that complex decreased to between that of BenIm 
and Triz. To our delight, the prediction was consistent with 
experiments, where [N4444][Triz] and [N4444][BenIm] had better 
catalytic activities than other ILs.”

However, the group was puzzled to find that the cations 
in the ILs also affected the reaction. Initially, the reaction 
mechan ism was investigated by DFT calculations (Figure 2). 
Professor Wang explained: “By using NMR spectroscopic in
vestigations (Figure 3) and DFT calculations, we found the 
basicity of ILs was different when they had different cations. 
Clearly, that is the reason that led to different catalytic acti
vities.”

Professor Wang remarked that this reaction can be ex
panded to other diyne alcohols, and the catalyst is reusable: 
“When 10 mmol of 1a was used, a high yield of 2a was ob 
tain ed after six hours,” he added.

“Importantly, I believe this manuscript presents a strate
gy to predict the catalytic activities of catalysts before expe
riments. Notably, we also discovered the influence of cations 
by the combination of NMR spectra and quantumchemical 
calculations,” said Professor Wang.

He concluded: “We hope this method can be also used in 
other basecatalyzed reactions and CCU processes.”

A23

Figure 1 The pKa relationship of the complex of 1a and CO2, 
1a and anions

Figure 2 Computational studies of the reaction mechanism (reprinted with permission from J. Am. Chem. Soc. 2016, 138, 14198)
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Figure 3 1H NMR spectra of HBenIm, [N4444][BenIm], [HTMG]
[BenIm], [HDBU][BenIm] [HMTBD][BenIm]
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The lab of Professor Oliver Seitz at the Humboldt University 
in Berlin (Germany) has a long-standing interest in the devel-
opment of methods which facilitate the synthetic access to 
proteins for biological studies. Professor Seitz said: “Our first 
idea was to simplify the synthesis by means of surface-based 
chemistry. We envisioned the use of fully synthetic protein 
arrays. Both the synthesis and the biological evaluation of the 
targeted proteins would proceed in an array format (just as 
we know it from peptide arrays, but now with folded pro-
teins). We were foreseeing large-scale studies on the influ-
ence of post-translational modification on protein–protein in-
teractions.” He continued: “While we were working towards 
achiev ing this goal (see Angew. Chem. Int. Ed. 2016, 55, 7252;  
J. Am. Chem. Soc. 2010, 132, 11110; Angew. Chem. Int. Ed. 
2007, 46, 4577) we noticed that there is actually an increas-
ing in terest in soluble synthetic proteins to guide the devel-
opment of protein-based drugs. Most recently we learned that 
chemical protein synthesis may even be an alternative to re-
combinant synthesis.”

According to the authors, the method presented in the 
Chem. Sci. paper has at least six distinct advantages over cur-
rently used methods. Firstly, there is the potential for parallel-
ization, whereas traditional methods of protein synthesis rely 
on HPLC for purification. Professor Seitz explained: “While it 
is no problem to perform peptide synthesis in parallel, paral-
lelization of HPLC purification is a technological challenge. Let 
us imagine the parallel synthesis of 100 proteins. The HPLC 
purification of 100 proteins would call for a sizeable invest-
ment into technical infrastructure such as several multiple co-
lumn HPLC devices, or purification is performed subsequently 
at the expense of time investment. The method developed by 
us overcomes the need for HPLC purification. Rather, the in-
strumental set-up for the entire purification process is based 
on low-priced filter-equipped plastic syringes and two com-
mercially available ‘purification resins’.”

Secondly, the presented method saves time. The authors 
explained that traditional protein synthesis methods require 
analysis and purification of both intermediary and final pro-
ducts (i.e. peptide fragments and ligation products) which is 
not only time-consuming but also requires human resources 
for the preparation of samples, analysis and subsequent lyo-
philization procedures. “Our approach bypasses the necessi-
ty for intermediary analysis. The purity of the intermediary 
products is not of concern because by-products will automa-

tically be washed away at later stages,” said Professor Seitz. 
Extended native chemical ligation and add-on removal of the 
ligation auxiliary are usually carried out in solution. However, 
the Seitz lab approach was different: “We performed both re-
actions on solid support. This enabled us to remove remaining 
peptide fragments, excess of reagents or exchange buffers 
within minutes by simple washing of the resin and conse-
quently helped to further decrease the time required for the 
whole synthesis procedure,” explained Professor Seitz.

The third advantage of this method is the reduction in the 
amount of waste products. “Considering the large amounts of 
organic solvents, the excess of protected amino acid building 
blocks and coupling activators wasted in the course of SPPS, 
chemical synthesis of peptides/proteins is anything but green. 
But the use of HPLC-based purification steps also contributes 
to an increased amount of toxic, in this case aqueous, waste,” 
said Professor Seitz. He remarked: “We calculated that our ap-
proach produces approximately 60 times less waste than tra-
ditional synthesis with HPLC purification.” 

“Fourthly, this method has a potential for automation,” 
said Professor Seitz, who explained that the synthesis of a full-
length protein usually requires the use of automated SPPS to 
obtain protein fragments and ligation techniques for the sub-
sequent conjugation of the protein fragments. The synthesis of 
the protein fragments is performed by using peptide synthe-
sizers in an automated and parallel manner. “The bottleneck 
of a fully automated and parallel chemical protein synthesis 
is the necessity for intermediate HPLC purifications, analysis 
and lyophilization steps,” said Professor Seitz, adding: “Our  
method bypasses these obstacles. The crude peptide frag-
ments obtained after SPPS can be used directly for the HPLC-
free puri fication and peptide ligation process. The stoichio-
metry or purity of the crude fragments is not important, as 
the final product will be obtained in high purity anyway.”

A fifth advantage is chemoselectivity vs HPLC purification. 
“At lengths above approximately 50 amino acids it is often 
difficult to separate full-length peptides from truncation pro-
ducts,” said Professor Seitz. He noted that this problem be-
comes worse as the length of the target peptide/protein in-
creases. “At large sizes the HPLC elution properties of peptides 
almost seem to converge. As a result, the single peak observed 
in HPLC trace may suggest purity but actually many by-pro-
ducts may be hiding underneath that peak,” explained Profes-
sor Seitz. He continued: “In this case, catch-and-release-based 

Total Chemical Synthesis of Proteins without HPLC Purification 

Chem. Sci. 2016, 7, 6753–6759
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Figure 1 Chemical synthesis of MUC-1 proteins without HPLC purification: A) Non-chromatographic purification is achieved by 
immobilization reactions via the N-terminal His6 tag (step 1) and the C-terminal hydrazide (step 5). Peptide thioesters 1a–c and 
auxiliary-loaded peptides 2a–c are conjugated (step 3) upon extended native chemical ligation which relies on the 2-mercapto-2- 
phenyl-ethyl auxiliary. The auxiliary is removed (step 4) under mild basic conditions. B) Purities of final MUC-1 proteins 3a–e and 
C)–D) UPLC-MS analyses of products 3b and 3d.
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purification methods are superior, because only the full length 
protein will carry the purification tag, but not the truncations 
(which may have equal polarity). This is illustrated in Figure 
2.”

Solubility is yet another advantage of this method. Chem-
ical protein synthesis is frequently faced with the problem of 
dealing with sparingly soluble peptide fragments. “While the 
crude material obtained after SPPS may still have sufficient so-
lubility, the solubility problem becomes pressing during HPLC 
purification,” said Professor Seitz. He continued: “The use 
of large amounts of denaturing agents such as guanidinium  
hydrochloride (added also in the native chemical ligation 
step) is not an option for HPLC as this will cause column over-
loading or even column damage. It is an advantage that our 
method tolerates the use of guanidinium hydrochloride.”

State-of-the-art purification of proteins or peptides is 
done by HPLC-based methods and provides a purity of the 
final product greater than 95% (typical high quality level  
offered from many peptide manufacturing companies). Pro-
fessor Seitz remarked: “We were able to obtain similar puri-
ties (90–98%) by using our HPLC-free purification approach, 
yet, as mentioned before, our method appears to be faster and 
cheaper. The quality of the final products should be sufficient 
for biological studies to guide screening efforts. Compared to 
proteins from recombinant sources, we have better batch-to-
batch repeatability.”

However, the method does have a few limitations. “Our 
case study involved the synthesis of mucin proteins. We  
selected a comparatively easy-to-form His-Gly bond,” said 
Professor Seitz. He continued: “Still, the on-resin native 
chem ical ligation required 24 hours. Even then, the liga-
tion was not complete. How will the solid-supported native 
chem ical liga tion proceed when more challenging ligation 
sites are tar geted? This will be problematic. Yet there is an 
easy solution to this problem. Rather than immobilizing the 
N-terminal fragment prior to ligation, the ligation fragments 
may be mixed in solution phase prior to immobilization. Na-
tive chemical ligation proceeds much faster in solution. After 
the solution-phase ligation, the affinity capture resin will be  
added to selectively extract products that contain the full-
length N-terminal fragment.”

Professor Seitz concluded: “We foresee two types of appli-
cation. In one scenario, the method will be used for the paral-
lel synthesis of proteins for subsequent screening in biological 
and biomedical research. Here, the full potential of chemistry 
can be unraveled in the synthesis of protein modifications not 
accessible by biological methods. In the second scenario, the 
method will be used to facilitate production of proteins when 
recombinant methods may either not provide access to the 
targeted modification or produce undesired by-products with 
batch-to-batch variations.”

A28

Figure 2 Reactivity-based purification as an alternative for difficult chromatographic purification: A) Chemoselective catch-and-
release from aldehyde-agarose enables the separation of MUC1- protein 3c from hydrolyzed peptide thioester 2bhydr. B)–C) UPLC 
analysis of the mixture of 3c and 2bhydr and the purified MUC-1 protein 3c.
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The unique characteristics of fluorine-containing substitu-
ents and their effects on molecular properties have led to nu-
merous applications of organofluorine compounds in medi-
cinal chemistry, chemical biology and drug discovery. Alkyl 
fluorides constitute a valuable class of organofluorine com-
pounds for pKa modulation, lipophilicity tuning, and selective 
blocking of oxidative metabolism.1 Consequently, a myriad of 
fluorination methods have been developed for their synthesis. 
Among them, the deoxyfluorination of alcohols via in situ ac-
tivation is a leading approach due to the ready availability of 
both natural and synthetic alcohols.2

Known deoxyfluorination reactions mainly rely on ‘S-F’  
reagents (such as DAST, Deoxo-Fluor, XtalFluor, Fluolead, 
and PyFluor) and ‘N-C-F’ reagents {such as Ishikawa reagent,  
N-[difluoro(m-tolyl)methyl]-N-ethylethanamine, PhenoFluor, 
and recently developed AlkylFluor}, which facilitate the re-
placement of an OH group with fluorine by means of hetero-
atom-promoted activation of alcohols followed by the nucleo-

philic attack of self-released or external fluoride ion.2 While 
these reagents possess features such as high reactivity, good 
chemoselectivity, enhanced shelf stability, ready availability 
or low cost, their selective reaction with multiple alcohols is 
usually paid little attention, except in the case of PhenoFluor,  
with apparently sterically controlled selectivity. Moreover, 
there is still a lack of a deoxyfluorination method that is cap-
able of fluorinating multiple alcohols selectively at the rela-
tively electron-rich position rather than the less sterically 
hindered position.

To tackle the existing chemoselectivity problem, the group 
of Professor Jinbo Hu from the Shanghai Institute of Organic 
Chemistry, Chinese Academy of Sciences (P. R. of China) de-
veloped a novel strategy for the deoxyfluorination of alcohols 
based on cyclopropenium cation activation by use of 3,3-di-
fluoro-1,2-diarylcyclopropenes (CpFluors) as easily accessible 
and reactivity-tunable reagents (Scheme 1). The synthetic po-
tential of this strategy is demonstrated by the fluorination of 

Deoxyfluorination of Alcohols with 3,3-Difluoro-1,2-diaryl-
cyclopropenes 

Nat. Commun. 2016, 7, 13320

Scheme 1 Pathways for deoxyfluorination of alcohols with CpFluors
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monoalcohols, fluorinative acylation of 1,2- and 1,3-diols, and 
selective fluorination of electron-rich alcohols.

Professor Hu explained: “Cyclopropenium cations have 
considerable thermodynamic stability owing to the Hückel 
aromaticity, and the stability and reactivity of this class of 
molecules can be tuned by changing the electronic proper-
ty of the substituents. As unique molecules with the binary 
properties of aromatic stability and ionic charge, they have 
been used for deoxyfunctionalization and in organic catalysis. 
However, their use for deoxyfluorination is a great challenge 
due to the low nucleophilicity of the fluoride ion and the cor-
rosive nature of HF towards glass.” Professor Hu continued: 
“Actually, we had started the project more than six years ago, 
when Professor Tristan H. Lambert and his co-worker from 
Columbia University (USA) just published a paper on the chlo-
rination of alcohols with gem-dichlorocyclopropenes.3 It hap-
pened that at the time we were working on the synthesis of 
gem-difluorocyclopropenes with difluorocarbene.4 Inspired 
by our interest on difluorocarbene chemistry and Professor 
Lambert’s work on cyclopropenium cation activation, we de-
cided to use the readily available difluorocarbene reagents as 
the source of fluoride for deoxyfluorination by virtue of the 
thermally stable gem-difluorocyclopropenes, hoping that we 
could develop a practical method for the fluorination of alco-
hols.”

Professor Hu revealed that initially numerous experiments 
evaluating the deoxyfluorination ability of 3,3-difluoro-1,2-
diphenylcyclopropene (CpFluor I) were performed in glass-
ware by Dr. Fei Wang, a senior graduate student at that time. 
“Interestingly, Dr. Wang found that this fluorination had only 
a limited scope of substrates including carboxylic acids and 
benzylic alcohols,5 which is different from Lambert’s chlori-

nation chemistry,” recalled Professor Hu, adding: “Fortunate-
ly, we did not give up this project. After the graduation of Dr. 
Wang, Dr. Lingchun Li joined our group as a graduate student 
and he took up Dr. Wang’s project. Dr. Li is scrupulous, and 
he found that the fluorination of non-activated monoalcohols 
with CpFluor I could be achieved by performing the reaction 
in non-glass ware to avoid corrosion by HF, although the high-
est yield was only moderate. With the help of Dr. Chuanfa Ni, 
an associate professor, also my first graduate student, Dr. Li 
eventually established that there was one more difference 
between the fluorination and chlorination after months of ex-
perimental investigations.” Professor Hu explained: “Because 
the fluoride ion is less nucleophilic than the chloride ion, the 
charged reactive intermediate, an alkoxycyclopropenium ca-
tion, prefers to form a neutral intermediate, a cyclopropenone 
acetal, rather than undergoing nucleophilic substitution by 
fluoride ion. The cyclopropenone acetal is also reactive but 
contributes less to the desired fluorination of monoalcohols. 
As a matter of fact,” continued Professor Hu: “by taking advan-
tage of this feature, we easily achieved the fluorination of 1,2- 
and 1,3-diols with CpFluor I (Scheme 2), in which the cyclic 
acetal intermediates, 1,3-dioxolanes and 1,3-dioxanes, readily 
formed regardless of the electronic nature of 3,3-difluoro-1,2-
diarylcyclopropenes, thus always furnishing the fluorinative 
acylation products in high yields through thermally induced 
ring opening of the electron-rich cyclopropenes followed by 
fluorination.”  

Eventually, the group was delighted to find that the path-
way for fluorination of monoalcohols could be switched by  
changing the electronic properties of CpFluors (Scheme 3).  
“Electron-rich aryl substituents are beneficial for the for - 
ma tion and stabilization of the alkoxycyclopropenium  

A31

Scheme 2 Deoxyfluorination of 1,2- and 1,3-diols with CpFluor I
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cations, thus facilitating the fluorination of monoalcohols 
with high efficien cy. Employing 3,3-difluoro-1,2-bis(4′-
methoxynaphthalen-1′-yl)cyclopropene (CpFluor II) or 3,3-di-
fluoro-1,2-bis(4′-methoxyphenyl)cyclopropene (CpFluor III) 
as the reagent, a series of primary and secondary monoalco-
hols smoothly underwent the deoxyfluorination to give alkyl 
fluorides in moderate to excellent yields,” explained Professor 
Hu. “Chiral secondary alcohols were normally deoxyfluori-
nated with inversion of configuration.” 

The invention of CpFluors as efficient deoxyfluorination 
reagents provided the group an opportunity to exploit the 
aforementioned challenging task, that is, selective fluorina tion 
of electron-rich alcohols (Scheme 4). Professor Hu explain ed: 
“The observation that the fluorination pathway of a given al-
cohol was sensitive to the electronic nature of CpFluors indi-
cates that the chemical outcome of this fluorination method 
should also be sensitive to the electronic nature of alcohols, 
because both the alkoxy substituent and the aryl substituents 
can influence the stabilization of the cyclopropenium cation 
intermediate.” At first, Dr. Li and Dr. Ni conducted the com-
petitive deoxyfluorination of two monoalcohols by the use 
of CpFluor III as the reagent and found that electron-rich al-
cohols did react faster than the relatively electron-poor ones. 
Having developed a proof-of-concept, the authors applied it in 

the transformation of diols with hydroxyl groups sepa rated by 
several carbon centers. “Compared with other reagents such 
as DAST, PhenoFluor and PyFluor, CpFluor reagents are the 
most sensitive towards the electronic nature of the alcohols, 
which represents a breakthrough in deoxyfluorination of al-
cohols,” said Professor Hu.

“In conclusion, an alcohol fluorination protocol using 
CpFluors as a novel class of deoxyfluorination reagents has 
been developed after a long-standing pursuit,” said Profes-
sor Hu. “The finding that the electronic properties of the aryl 
substituents on the scaffold of CpFluors can dramatically in-
fluence the transformation of alcohols is instructive, which 
shows the way for achieving selective fluorination of electron-
rich alcohols.” He concluded: “This research also sheds light 
on the divergent reactivity of cyclopropenium cations in the 
transformation of alcohols. We hope that this concept will 
find application in other selective deoxyfunctionalizations of 
alcohols.”

A32

Scheme 3 Deoxyfluorination of monoalcohols with CpFluor II and III; es refers to enantiospecificity: es = (ee of starting material)/ 
(ee of product) x 100%.

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



© Georg Thieme Verlag Stuttgart • New York – Synform 2017/02, A30–A34 • Published online: January 18, 2017 • DOI: 10.1055/s-0036-1589816

Literature CoverageSynform

A33

REFERENCES
(1) Q. A. Huchet, B. Kuhn, B. Wagner, N. A. Kratochwil,  
H. Fischer, M. Kansy, D. Zimmerli, E. M. Carreira, K. Müller  
J. Med. Chem. 2015, 58, 9041.
(2) For a review: (a) P. A. Champagne, J. Desroches,  
J.-D. Hamel, M. Vandamme, J.-F. Paquin Chem. Rev. 2015, 115, 
9073; For recent examples: (b) M. K. Nielsen, C. R. Ugaz,  
W. Li, A. G. Doyle J. Am. Chem. Soc. 2015, 137, 9571;  
(c) N. W. Goldberg, X. Shen, J. Li, T. Ritter Org. Lett. 2016, 18, 
6102.
(3) B. D. Kelly, T. H. Lambert J. Am. Chem. Soc. 2009, 131, 
13930.
(4) (a) F. Wang, W. Zhang, J. Zhu, H. Li, K.-W. Huang, J. Hu 
Chem. Commun. 2011, 47, 2411; For a review: (b) C. Ni, J. Hu 
Synthesis 2014, 46, 842.
(5) (a) F. Wang, Ph.D. dissertation, Shanghai Institute of  
Organic Chemistry, CAS, 2011; (b) J. Hu, F. Wang, M. Hu,  
X. Shen, T. Luo Chinese Patent CN 102285849 A, 2011. 

Scheme 4 Selective deoxyfluorination of electron-rich alcohols with CpFluor III (yields are total fluorination yields at the given posi-
tion determined by 19F NMR spectroscopy, yields in parentheses refer to isolated yields of monofluorination products with retention 
of the other hydroxyl group)
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