Toward Automated Oligo[n]rotaxanes

Key words

oligorotaxanes
iterative synthesis
AT-CuAAC

Reaction conditions:
i) $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}$, DIPEA, EtOH, $100^{\circ} \mathrm{C}$
ii) $\mathrm{TFA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t.
iii) TBAF, THF, r.t.

Significance: Molecular motors are prime candidates in the development of new materials and sensors. The rotaxane structure has been shown to be able to act as a molecular muscle or molecular computer chip, for which Fraser Stoddart was awarded the 2016 Nobel Prize. The authors demonstrate an iterative synthesis yielding oligorotaxanes in high yields.

Comment: Given the immense importance of rotaxanes, iterative syntheses and their ability to automate syntheses are vital for the widespread application of molecular motors such as rotaxanes. The approach involves an active template coppermediated alkyne-azide cycloaddition (AT-CuAAC) and is applicable to homo- and hetero[n]rotaxanes.

[^0]
[^0]: synfacts Contributors: Timothy M. Swager, Constantin-Christian A. Voll
 Synfacts 2017, 13(02), 0145 Published online: 18.01.2017
 DOI: 10.1055/s-0036-1589933; Reg-No.: S14716SF

