Synlett 2018; 29(01): 46-50
DOI: 10.1055/s-0036-1590922
letter
© Georg Thieme Verlag Stuttgart · New York

Radical Allylation: E-Selective Radical Conjugate Addition–Elimination Reaction from Morita–Baylis–Hillman Adducts

Cyril Lebargy
Normandie University, Laboratoire de Chimie Moléculaire et Thioorganique UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050 Caen, France   Email: thierry.lequeux@ensicaen.fr
,
Coralie De Schutter
Normandie University, Laboratoire de Chimie Moléculaire et Thioorganique UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050 Caen, France   Email: thierry.lequeux@ensicaen.fr
,
Remi Legay
Normandie University, Laboratoire de Chimie Moléculaire et Thioorganique UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050 Caen, France   Email: thierry.lequeux@ensicaen.fr
,
Emmanuel Pfund
Normandie University, Laboratoire de Chimie Moléculaire et Thioorganique UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050 Caen, France   Email: thierry.lequeux@ensicaen.fr
,
Thierry Lequeux*
Normandie University, Laboratoire de Chimie Moléculaire et Thioorganique UMR 6507, ENSICAEN, UNICAEN, CNRS, 6 Bd. du Maréchal Juin, 14050 Caen, France   Email: thierry.lequeux@ensicaen.fr
› Author Affiliations
This work was supported by the excellence laboratory LabEx SYNORG (ANR-11-LABX-0029), the Conseil Régional de Normandie, and the European FEDER fundings.
Further Information

Publication History

Received: 28 July 2017

Accepted after revision: 07 September 2017

Publication Date:
27 September 2017 (online)


Abstract

Triethylborane-mediated radical allylation was performed from Morita–Baylis–Hillman alcohols with no need of protecting group. The radical conjugated addition–elimination reaction is highly selective, and trisubstituted E-alkenes were obtained. This reaction opened a new route for the preparation of functionalized α,β-unsaturated ketones.

Supporting Information

 
  • References and Notes

  • 1 Curran DP. Synthesis 1988; 489
    • 2a Quiclet-Sire B. Zard SZ. J. Am. Chem. Soc. 1996; 118: 1209
    • 2b Le Guyader F. Quiclet-Sire B. Seguin S. Zard SZ. J. Am. Chem. Soc. 1997; 119: 7410
    • 2c Schaffner A-P. Renaud P. Angew. Chem. Int. Ed. 2003; 42: 2658
    • 2d Charrier N. Zard SZ. Angew. Chem. Int. Ed. 2008; 47: 9443
    • 3a Charrier N. Quiclet-Sire B. Zard SZ. J. Am. Chem. Soc. 2008; 130: 8898
    • 3b Debien L. Quiclet-Sire B. Zard SZ. Org. Lett. 2012; 14: 5118
    • 3c Debien L. Quiclet-Sire B. Zard SZ. Acc. Chem. Res. 2015; 48: 1237
  • 4 Debien L. Zard SZ. J. Am. Chem. Soc. 2013; 135: 3808
    • 5a De Schutter C. Pfund E. Lequeux T. Tetrahedron 2013; 69: 5920
    • 5b Tang X.-J. Zhang Z. Dolbier WR. Jr. Chem. Eur. J. 2015; 21: 18961
    • 5c Yoshioka E. Kohtani S. Sawai K. Tanaka E. Miyabe H. J. Org. Chem. 2012; 77: 8588
    • 5d Qiu Z.-M. Burton DJ. Tetrahedron Lett. 1994; 35: 1813
    • 6a Kamimura D. Urabe D. Nagatomo M. Inoue M. Org. Lett. 2013; 15: 5122
    • 6b Kamimura D. Nagatomo M. Urabe D. Inoue M. Tetrahedron 2016; 72: 7839
  • 7 Geometry of the carbon–carbon double bond was determined by NOE experiments reported in the Supporting Information.

    • Recent reviews:
    • 8a Zhang C.-P. Chen Q.-Y. Guo Y. Xiao J.-C. Gu Y.-C. Chem. Soc. Rev. 2012; 41: 4536
    • 8b Barata-Vallejo S. Bonesi SM. Postigo A. Org. Biomol. Chem. 2015; 13: 11153
    • 8c Zard SZ. Org. Biomol. Chem. 2016; 14: 6891
  • 9 Kondratov IS. Bugera MY. Tolmachova NA. Poternak GG. Daniliuc CG. Haufe G. J. Org. Chem. 2015; 80: 12258
    • 10a Spiegel DA. Wiberg KB. Schacherer LN. Medeiros MR. Wood JL. J. Am. Chem. Soc. 2005; 127: 12513
    • 10b Pozzi D. Scanlan EM. Renaud P. J. Am. Chem. Soc. 2015; 127: 14204
  • 11 Mandal SK. Paira M. Roy SC. J. Org. Chem. 2008; 73: 3823
    • 12a Jenn T. Heissler D. Tetrahedron 1998; 54: 97
    • 12b Jenn T. Heissler D. Tetrahedron 1998; 54: 107
  • 13 Sibi MP. Patil K. Org. Lett. 2005; 7: 1453
  • 14 Meyer AU. Slanina T. Yao C.-Y. König B. ACS Catal. 2016; 6: 369
    • 15a Guindon Y. Bencheqroun M. Bouzide A. J. Am. Chem. Soc. 2005; 127: 554
    • 15b Grélaud S. Desvergnes V. Landais Y. Org. Lett. 2016; 18: 1542
  • 17 Ozeki M. Egawa H. Kuse A. Takano T. Yasuda N. Mitzutani H. Izumyia S. Nakashima D. Arimitsu K. Miura T. Kajimoto T. Hosoi S. Iwasaki H. Kojima M. Node M. Yamashita M. Synthesis 2015; 47: 3392
    • 18a General Procedure for Radical Conjugated Addition–Elimination Reaction Triethylborane (1 M in hexane, 1.2 equiv) was added dropwise over 0.5 h with a syringe pump to a solution of iodoalkane (1 equiv) and Morita–Baylis–Hillman adduct (1.2 equiv) in CH2Cl2 under air atmosphere. After 4 h of stirring at 20 °C, the crude mixture was concentrated under reduced pressure, and the residue was purified by flash chromatography on silica gel to give the title compound. (E)-Diisopropyl 1,1-Difluoro-3-propionyl-3-hexenyl Phosphonate (3) General procedure was followed with iododifluorophosphonate 1a (50.0 mg, 0.15 mmol), 5-hydroxy-4-methylideneheptan-3-one (2, 25.0 mg, 0.18 mmol), and Et3B (0.18 mL, 1 M in hexane, 0.18 mmol) in CH2Cl2 (2 mL). Purification by flash chromatography of the crude mixture (EtOAc/pentane, 1:1) afforded compound 3 (36.4 mg, 71%, colorless oil). 1H NMR (400 MHz, CDCl3): δ = 6.83 (t, 3 J HH = 7.4 Hz, 1 H, H4), 4.82 (dsept, 3 J HP = 3 J HH = 6.2 Hz, 2 H), 3.18 (td, 3 J HF = 20.5 Hz, 3 J HP = 3.0 Hz, 2 H), 2.70 (q, 3 J HH = 7.4 Hz, 2 H), 2.29 (dt, 3 J HH = 3 J HH = 7.4 Hz, 2 H), 1.37 (d, 3 J HH = 6.2 Hz, 12 H), 1.09, 1.06 (t, 3 J HH = 7.4 Hz, 6 H). 13C NMR (100 MHz, CDCl3): δ = 201.2, 149.0, 131.3 (td, 3 J CF = 7.9 Hz, 3 J CP = 2.2 Hz), 119.6 (td, 1 J CF = 262.1 Hz, 1 J CP = 215.7 H), 73.9 (d, 2 J CP = 6.9 Hz), 30.5, 28.9 (td, 2 J CF = 20.3 Hz, 2 J CP = 15.9 Hz), 24.3 (d, 3 J CP = 3.5 Hz), 23.8 (d, 3 J CP = 4.4 Hz), 23.3, 13.1, 8.8. 19F NMR (376 MHz, CDCl3): δ = –111.86 (dt, 2 J FP = 107.6 Hz, 3 J FH = 20.5 Hz, 2 F). 31P NMR (161 MHz, CDCl3): δ = 4.9 (t, 2 J PF = 107.6 Hz, 1 P). ESI-HRMS: m/z [M + Na]+ calcd for C15H27O4PF2Na; 363.1513; found: 363.1502. (E)-Ethyl 2,2-Difluoro-5-oxo-4-benzylidene-heptanoate (8b) General procedure was followed with ethyl iododifluoroacetate (1b, 100.0 mg, 0.40 mmol), 2-[hydroxy(phenyl)methyl]pent-1-en-3-one (5, 92.0 mg, 0.48 mmol), Et3B (0.48 mL, 1 M in hexane, 0.48 mmol) in CH2Cl2 (3 mL). Purification by flash chromatography of the crude mixture (EtOAc/pentane, 1:9) afforded compound 8b (60 mg, 51%, colorless oil). 1H NMR (400 MHz CDCl3): δ = 7.56 (s, 1 H), 7.25 (m, 5 H), 4.08 (q, 3 J HH= 7.2 Hz, 2 H), 3,21 (t, 3 J HF= 15.6 Hz, 2 H), 2.66 (q, 3 J HH= 7.2 Hz, 2 H), 1.16 (t, 3 J HH= 7.2 Hz, 3 H), 0.98 (t, 3 J HH= 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 202.1, 163.9 (t, 2 J CF= 32.5 Hz), 143.4, 134.5, 132.7 (t, 3 J CF= 4.3 Hz), 129.2, 129.1, 128.8, 114.8 (t, 1 J CF= 253.8 Hz), 62.9, 32.1 (t, 2 J CF= 25.3 Hz), 30.7, 13.9, 8.6. 18F NMR (470 MHz, CDCl3): δ = –102,12 (t, 3 J HF= 15.6 Hz). ESI-HRMS: m/z [M + H]+ calcd for C16H19O3F2: 297.1302; found: 297.1305. Diisopropyl 1,1-Difluoro-3-hydroxybutyl-4-oxo-hexyl Phosphonate (14) Procedure A A solution of Bu3SnH (0.235 mL, 0.877 mmol) in hexane (2 mL) was added dropwise over 18 h with a syringe pump to an irradiated solution, at 254 nm with 15 W lamp, of iodophosphonate 1a (300 mg, 0.877 mmol) and 5-hydroxy-4-methylideneoctan-3-one (4, 274 mg, 1.75 mmol) in hexane. The resulting mixture was concentrated under reduced pressure, and the residue was purified by flash chromatography on silica gel (EtOAc/pentane, 3:2) to afford compound 14 (246 mg, 75%, colorless oil). Procedure B A solution of 5-hydroxy-4-methylideneoctan-3-one (4, 55 mg, 0.35 mmol), iodophosphonate 1a (100 mg, 0.292 mmol), eosin Y (7.5 mg, 0.0117 mmol), and Et3N (0.079 mL, 0.584 mmol) in dry CH3CN under stirring was irradiated with a green led light (534 nm) over 18 h. The red resulting mixture was concentrated under reduced pressure, and the residue was purified by flash chromatography on silica gel (EtOAc/pentane, 3:2) to afford compound 14 (63 mg, 58%, colorless oil). 1H NMR (500 MHz, CDCl3): δ = 4.77 (m, 2 H), 3.67–3.59 (d, J HF = 21.6 Hz, 1 H), 3.12–3.01 (d, J HF = 33.2 Hz, 1 H), 2.65–2.44 (m, 4 H), 2.37–2.22 (m, 2 H), 1.45 (m, 2 H), 1.34 (m, 12 H), 1.01 (q, 3 J HH= 5.6 Hz, 4 H), 0.85 (q, 3 J HH= 5.2 Hz, 4 H). 13C NMR (100 MHz, CDCl3): δ = 214.8, 213.8, 120.4 (dt, 1 J CP= 216.5 Hz, 1 J CF= 258.4 Hz, dia 1),120.2 (dt, 1 J CP= 217.9 Hz, 1 J CF= 260 Hz, dia 2), 73.8 , 73.2, 70.9, 48.6 (t, 3 J CF= 3.6 Hz), 48.3 (t, 3 J CF= 2.5 Hz), 38.4, 37.5, 36.9, 36.4, 33.7 (td, 2 J CF = 20.4 Hz ,2 J CP = 15.1 Hz, dia 1), 31.1 (td, 2 J CF= 20.2 Hz, 2 J CP= 15.3 Hz, dia 2), 24.1 (d, 3 J CP = 3.2 Hz, dia 1), 24.0 (d, 3 J CP = 3.5 Hz, dia 1), 23.7 (d, 3 J CP = 4.7 Hz, dia 2), 23.6 (d, 3 J CP = 4.9 Hz, dia 2) 19.1, 19.0, 13.8, 7.4, 7.2. 18F NMR (470 MHz, CDCl3): δ = –108.8 (dddd, 1 J FF = 293.8 Hz, 2 J PF = 109.6 Hz, 3 J FH = 30.6 Hz,3 J FH = 8.3 Hz, 1 F dia 1), –108.9 (dddd, 1 J FF = 293.6 Hz, 2 J PF = 109.6 Hz, 3 J FH = 31.2 Hz, 3 J FH = 8.9 Hz, 1 F dia 2), –112,6 (dddd, 1 J FF = 293.7 Hz, 2 J PF = 109.6 Hz, 3 J FH = 30.4 Hz,3 J FH = 13.4 Hz, 1 F dia 1), –113,0 (dddd, 1 J FF = 293.8 Hz, 2 J PF = 109.6 Hz, 3 J FH = 30.6 Hz,3 J FH = 12.5 Hz, 1 F dia 2). 31P NMR (202 MHz, CDCl3): δ = 4.60 (t, 2 J PF = 109.6 Hz). ESI-HRMS: m/z [M + H]+ calcd for C16H32O5F2P: 373.1955; found: 373.1955.