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Abstract An effective approach to monobromination reactions utiliz-
ing room temperature ball-milling is introduced for the synthesis of aryl
bromides and bromoketones with N-bromosuccinimide (NBS) and
MCM-41-SO3H. Advantages of this technique are short reaction times
and high regioselectivity. In contrast to other techniques using micro-
waves, ultrasound, or ionic liquids, handling of sensitive materials is
possible and furthermore, this method has advantages over other sol-
vent-free techniques that require a higher reaction temperature for
high yield of products.
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Halogenated compounds have diverse applications in
various fields such as pharmaceuticals and agrochemicals.1
Aromatic halides are the key fragments of coupling reac-
tions such as Heck, Suzuki, Sonogashira, and hetero cou-
pling reactions.2–5

For the synthesis of brominated aromatic compounds,
Br2 is the traditional reagent, but results in the production
of HBr and procedures often require careful control of tem-
perature and amount of Br2. As a result, improved mild bro-
minating agents have been developed,6–13 but a fundamen-
tal disadvantage for many of these methods is unwanted
oxidation of sensitive functional groups.

To eliminate such problems, NBS has been used for bro-
minating aromatic compounds14 and several reaction con-
ditions in organic solvents have been reported to activate
the halogenating ability of NBS.15–17

There are some reports that describe halogenations in
the presence acidic catalyst, such as trihaloisocyanuric acid
for halogenation of β-dicarbonyl compounds,18a sodium
hypochlorite for the halogenation of β-dicarbonyl com-
pounds,18b and NBS in the presence of acidic catalyst.16

It became clear to us that combining an acidic catalyst
and NBS leads to more efficient bromination reactions. In
addition, using heterogeneous acidic nanocatalysts can be
advantageous over homogeneous catalysts as a result of
their high surface area, recyclability and simplified work-
up.

A specific example of a silica material with ordered
structure, narrow pore-size distribution (1.5–10 nm) and
very high surface area (more than 1500 m2 g–1) that can be
used as a heterogeneous nanocatalyst is MCM-41. Modifi-
cation of its surface can result in a solid acid with high uni-
formity, modified by covalent anchoring of different organ-
ic moieties in a well-ordered mesoporous material. Thus,
nanoparticulate MCM-41-SO3H with covalently bound sul-
fonic acid was selected for investigation as a heterogeneous
acidic nanocatalyst.

It has been said that ‘the best solvent is no solvent’, but
to obtain high yields under solvent-free conditions fre-
quently involves high temperatures that are not suitable for
materials that are temperature sensitive such as terminal
alkynes.19

One solution can be found in ‘mechanochemistry’,20

which involves induction of a chemical reaction by the di-
rect absorption of mechanical energy.1 In mechanochemis-
try, mechanical energy in the solid state is used for bond
breaking (as compared to microwave and sonication in
which thermal activation is used for bond breaking).21 In-
tramolecular bonds can be mechanically broken and this is
then followed by further chemical reactions.19,22 Mechano-
chemistry is now conducted using ball-mills under solvent-
free conditions.23–27 Ball-milling is an emerging field with
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applications in the synthesis of metal complexes, the for-
mation of metal–organic frameworks, the synthesis of cata-
lysts, and the assembly of co-crystals between pharmaco-
logically active compounds.28–32 Examples of ball-milling
applications in organic synthesis include C–H bond-func-
tionalization, C–N coupling, and the formation of pyrazoles
and indoles.33,34

In this study, ball-milling was examined for bromina-
tion reactions with NBS in the presence of MCM-41-SO3H
as a co-catalyst.35 It was found that using NBS without any
co-catalyst led to extended reaction times (Table 1), but re-
action in the presence of MCM-41-SO3H under ball-milling
conditions afforded the corresponding brominated prod-
ucts of aryl alcohols in 1–10 min and ketones in 4–20 min
in 85–96% product yields. In this manuscript, we thus pres-
ent the mechanochemical monobromination of activated
aromatic and aliphatic substrates as a novel protocol
(Scheme 1).34b,34c In conclusion, we have developed an effi-
cient technique for monobromination reaction, and, in
comparison to other solvent-free techniques that require
high temperature, this method is highly effective.

Scheme 1  Monobromination of aryl and aliphatic compounds

Bromination was examined using ball-milling (a Retsch
Mixer Mill MM 400) with NBS with and without MCM-41-
SO3H and the results showed that the time required with-
out MCM-41-SO3H co-catalyst was twice as long as reaction
with the presence of the MCM-41-SO3H (Table 1). In the
presence of NBS and MCM-41-SO3H in ethanol, the desired
products were obtained in 1 h, whereas in the presence of
other co-catalysts, much longer times were required (Table
2, entries 3 and 5).

Table 1  Bromination Reaction with and without Co-catalysta

To optimize the amount of catalyst, 0.01 g catalyst for
each mmol of substrate was initially used, but starting ma-
terial remained. When the amount of catalyst was in-
creased to 0.02 g the yields of reaction were optimal. When
the amount of catalyst was increased to 0.03 and 0.04 g, di-
brominated products were produced. Various solvent sys-
tems were investigated, but the best yields were gained
when ball-milling alone was used.

The vibrational frequency of the ball-milling device was
3–30 Hz, and the grinding jars were stainless steel with a
volume of 10 mL. The size of the milling balls was 10 mm.
Initial studies used a rotational frequency of 20 Hz at room
temperature for a total of 11 minutes for bromination of 2-
chlorophenol. Increasing the rotational frequency from 20
to 30 Hz led to increased product yield, along with a 10
minute decrease in the reaction time. The highest yield of
96% of 4-bromo-2-chlorophenol was obtained at a rotation-
al frequency of 30 Hz within 1 minute (Table 3, entry 4).

Table 2  Comparison with Other Catalytic Systemsa

A range of bromination reactions was investigated using
this protocol and the results are shown in Table 3 and Table
4. All the substrates treated with 0.01 g of NBS and 0.02 g of
MCM-41-SO3H for each mmole of substrate at room tem-
perature afforded the corresponding brominated products
in high yield with high regioselectivity. Worthy of note, the
reaction of NBS and benzaldehyde in the presence of 0.02 g
MCM-41-SO3H did not give the expected direction of sub-
stitution and 4-bromo benzaldehyde was obtained in-
stead.48–50

Substrate NBS NBS and MCM-41-SO3H

Naphthalen-2-ol 10 min, 75% 5 min, 95%

Acetophenone 30 min, 70% 15 min, 87%
a Ball-milling at room temperature.
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Entry Catalyst Time Solvent Temp. 
(°C)

Yield 
(%)

Ref.

1 NH4Br-oxone 7 h MeOH r.t. 81 36

2 H2O2-HBr 3 h H2O r.t. 60 37

3 NBS-pTSA 30 min CH3CN 80 46 38

4 HBr 10 h DMSO 40 69 39

5 p-TsOH·H2O-NBS 9 h CH3Cl r.t. 92 40

6 MCM41-SO3H 15 min solvent 
free

r.t. 87

a Bromination reaction of acetophenone.
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Table 3  Bromination of Aromatic Compoundsa

Table 4  α-Bromination of Carbonyl Compoundsa
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