Synlett 2018; 29(04): 493-496
DOI: 10.1055/s-0036-1591509
letter
© Georg Thieme Verlag Stuttgart · New York

Green Synthesis of Pyrido[2,1-a]isoquinolines and Pyrido[1,2-a]quinolines by Using ZnO Nanoparticles

Maryam Ghazvini
a   Department of Chemistry, Payame Noor University, PO Box 3971189451, Tehran, Iran
,
Fatemeh Sheikholeslami-Farahani*
b   Department of Chemistry, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran
,
Somayeh Soleimani-Amiri
c   Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
,
Masoomeh Salimifard
d   Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
,
Rezvaneh Rostamian
d   Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
› Author Affiliations
We gratefully acknowledge financial support provided by the Islamic Azad University of Firoozkooh, Karaj and Payame Noor University.
Further Information

Publication History

Received: 27 August 2017

Accepted after revision: 04 October 2017

Publication Date:
07 December 2017 (online)


Abstract

Pyrido[2,1-a]isoquinoline and pyrido[1,2-a]quinoline derivatives have been produced in good yields by the reaction of isoquinoline or quinoline, activated acetylenic compounds, α-halo ketones, and triphenylphosphine in the presence of ZnO nanoparticles (NPs) as an efficient catalyst under solvent-free conditions at room temperature. The reaction workup is easy, and the products can be readily separated from the reaction mixture. ZnO NPs markedly improved the yield of the product. The catalyst showed significant reusable activity.

 
  • References and Notes

  • 1 Hermecz I. Vasvári-Debreczy L. Mátyus P. In Comprehensive Heterocyclic Chemistry II . Vol. 8, Chap. 8.23. Katritzky AR. Rees CW. Scriven EV. F. Pergamon; Oxford: 1996: 563
    • 2a Jayaraman M. Fox BM. Hollingshead M. Kohlhagen G. Pommier Y. Cushman M. J. Med. Chem. 2002; 45: 242
    • 2b Goldberg DR. Butz T. Cardozo MG. Eckner RJ. Hammach A. Huang J. Jakes S. Kapadia S. Kashem M. Lukas S. Morwick TM. Panzenbeck M. Patel U. Pav S. Peet GW. Peterson JD. Prokopowicz AS. III. Snow RJ. Sellati R. Takahashi H. Tan J. Tschantz MA. Wang X.-J. Wang Y. Wolak J. Xiong P. Moss N. J. Med. Chem. 2003; 46: 1337
    • 2c Griffin RJ. Fontana G. Golding BT. Guiard S. Hardcastle IR. Leahy JJ. J. Martin N. Richardson C. Rigoreau L. Stockley M. Smith GC. M. J. Med. Chem. 2005; 48: 569
    • 2d Goldbrunner M. Loidl G. Polossek T. Mannschreck A. von Angerer E. J. Med. Chem. 1997; 40: 3524
  • 3 Ruppert D. Weithmann KU. Life Sci. 1982; 31: 2037
  • 4 Swinbourne JF. Hunt HJ. Klinkert G. Adv. Heterocycl. Chem. 1987; 23: 103
  • 5 Kidwai M. Bhushan KR. Sapra P. Saxena RK. Gupta P. Bioorg. Med. Chem. 2000; 8: 69
    • 6a Touré BB. Hall DG. Chem. Rev. 2009; 109: 4439
    • 6b Balme G. Bossharth E. Monteiro N. Eur. J. Org. Chem. 2003; 4101
    • 6c Hulme C. Gore V. Curr. Med. Chem. 2003; 10: 51
    • 6d Zhu J. Eur. J. Org. Chem. 2003; 1133
    • 6e Tietze LF. Modi A. Med. Res. Rev. 2000; 20: 304
    • 6f Maiti S. Biswas S. Jana U. J. Org. Chem. 2010; 75: 1674
    • 6g Gu YL. Green Chem. 2012; 14: 2091
    • 6h Gers CF. Nordmann J. Kumru C. Frank W. Müller TJ. J. J. Org. Chem. 2014; 79: 3296
    • 6i Mondal A. Mukhopadhyay C. ACS Comb. Sci. 2015; 17: 404
  • 8 Erlanson DA. McDowell RS. O’Brien T. J. Med. Chem. 2004; 47: 3463
  • 11 Shingate BB. Org. Chem.: Curr. Res. 2012; 1: e107; DOI: 10.4172/2161 >0401.1000e107
    • 12a Keivanloo A. Kazemi SS. Nasr-Isfahani H. Bamoniri A. Tetrahedron 2016; 72: 6536
    • 12b Hajduk PJ. Greer J. Nat. Rev. Drug Discovery 2007; 6: 211
  • 13 Microwaves in Organic Synthesis . 2nd ed.; Loupy A. Wiley-VCH; Weinheim: 2006
  • 14 Chmura AJ. Davidson MG. Frankis CJ. Jones MD. Lunn MD. Chem. Commun. 2008; 1293
  • 15 Góra M. Kozik B. Jamroży K. Łuczyński MK. Brzuzan P. Woźny M. Green Chem. 2009; 11: 863
    • 16a Hasaninejad A. Shekouhy M. Zare A. Catal. Sci. Technol. 2012; 2: 201
    • 16b Hasaninejad A. Zare A. Shekouhy M. Ameri-Rad J. Green Chem. 2011; 13: 958
    • 16c Hasaninejad A. Rasekhi Kazerooni M. Zare A. Catal. Today 2012; 196: 148
  • 17 Rostamizadeh S. Nojavan M. Aryan R. Isapoor E. Azad M. J. Mol. Catal. A: Chem. 2013; 374–375: 102
  • 18 Beydoun D. Amal R. Low G. McEvoy S. J. Nanopart. Res. 1999; 1: 439
  • 19 Comparelli R. Fanizza E. Curri ML. Cozzoli PD. Mascolo G. Agostiano A. Appl. Catal., B 2005; 60: 1
  • 20 Moghaddam FM. Saeidian H. Mater. Sci. Eng., B 2007; 139: 265
  • 21 Mirjafary H. Saeidian H. Sadeghi A. Moghaddam FM. Catal. Commun. 2008; 9: 299
  • 22 Gupta M. Paul S. Gupta R. Loupy A. Tetrahedron Lett. 2005; 46: 4957
  • 23 Lietti L. Tronconi E. Forzatti PJ. Busca G. J. Mol. Catal. 1989; 55: 43
  • 24 Eskandari K. Karami B. Khodabakhshi S. Chem. Heterocycl. Compd. 2015; 50: 1658
  • 25 Hossaini Z. Ghambarian M. Afshari Sharif Abad S. Mohtat B. Lett. Org. Chem. 2015; 12: 176
  • 26 Hossaini Z. Rostami-Charati F. Ghasemian M. Afshari Sharif Abad S. Synlett 2015; 26: 1222
  • 27 Hossaini Z. Sheikholeslami-Farahani F. Rostami-Charati F. Comb. Chem. High Throughput Screening 2014; 17: 804
  • 28 ZnO Nanoparticles NaOH (0.44 g) was dissolved in distilled H2O (75 mL) at r.t. Zn(OAc)2·2H2O (0.6 g) was added, and the solution and was heated at 80 °C for 1.5 h. The solution was then cooled to r.t., and the precipitate was collected by filtration and washed several times with distilled H2O and 96% EtOH. The solid ZnO NPs were dried in air at r.t. for 24 h. Pyrido [2,1-a]isoquinolines 5af; General Procedure To a stirred mixture of isoquinoline 1 (0.258 g, 2 mmol) and the appropriate activated acetylenic diester 2 (2 mmol) was added a mixture of Ph3P (4; 2 mmol), the appropriate alkyl bromide 3 (2 mmol), and ZnO NPs (10 mol%). The resulting mixture was stirred at r.t. for about 5 h until the reaction was complete (TLC). H2O (15 mL) was poured onto the reaction mixture, and the solids were collected by filtration. The catalyst was separated by washing the solid with EtOAc (2 × 3 mL) and filtering. The EtOAc was evaporated and the residue was washed with Et2O. Methyl 1-[Ethoxy(oxo)acetyl]-2-methoxy-6H-pyrido[2,1-a]isoquinoline-4-carboxylate (5a) Yellow powder; yield: 0.75 g (95%); mp 135–137 °C. IR (KBr): 1738, 1732, 1725, 1692, 1575, 1486, 1293 cm–1. 1H NMR (500.1 MHz, CDCl3): δ = 1.02 (t, J = 7.3 Hz, 3 H, Me), 3.75 (s, 3 H, MeO), 3.78 (s, 3 H, MeO), 4.22 (q, J = 7.3 Hz, 2 H, CH2O), 5.18 (s, 1 H, CH), 5.62 (d, J = 7.5 Hz, 1 H, CH), 5.78 (s, 1 H, CH), 7.12 (d, J = 7.5 Hz, 1 H, CH), 7.28 (t, J = 7.6 Hz, 1 H, CH), 7.32 (t, J = 7.6 Hz, 1 H, CH), 7.45 (d, J = 7.6 Hz, 1 H, CH), 7.56 (d, J = 7.6 Hz, 1 H, CH). 13C NMR (125.7 MHz, CDCl3): δ = 13.8 (Me), 52.3 (MeO), 55.7 (CH), 58.4 (MeO), 62.3 (CH2O), 102.3 (CH), 106.3 (CH), 121.2 (CH), 121.8 (C), 126.7 (CH), 127.4 (CH), 127.8 (CH), 128.3 (CH), 136.2 (C), 141.5 (C), 142.2 (C), 155.3 (C), 160.2 (C=O), 166.4 (C=O), 182.7 (C=O). MS (EI-MS): m/z (%) = 369 [M] (15), 338 (62), 129 (100), 31 (100). Anal. Calcd for C20H19NO6 (369.37): C 65.03, H 5.18, N 3.79; Found: C 65.18, H 5.34, N 3.94. Ethyl 2-Ethoxy-1-[ethoxy(oxo)acetyl]-6H-pyrido[2,1-a]isoquinoline-4-carboxylate (5b) Yellow powder; yield: 0.70 g (93%); mp 142–144 °C. IR (KBr): 1742, 1736, 1727, 1687, 1562, 1485, 1285 cm –1. 1H NMR (500.1 MHz, CDCl3): δ = 0.98 (t, J = 7.3 Hz, 3 H, Me), 1.06 (t, J = 7.4 Hz, 3 H, Me), 1.12 (t, J = 7.4 Hz, 3 H, Me), 4.12 (q, J = 7.4 Hz, 2 H, CH2O), 4.18 (q, J = 7.4 Hz, 2 H, CH2O), 4.25 (q, J = 7.4 Hz, 2 H, CH2O), 5.22 (s, 1 H, CH), 5.68 (d, J = 7.6 Hz, 1 H, CH), 5.82 (s, 1 H, CH), 7.16 (d, J = 7.6 Hz, 1 H, CH), 7.33 (t, J = 7.6 Hz, 1 H, CH), 7.36 (t, J = 7.6 Hz, 1 H, CH), 7.47 (d, J = 7.6 Hz, 1 H, CH), 7.63 (d, J = 7.6 Hz, 1 H, CH). 13C NMR (125.7 MHz, CDCl3): δ = 13.5 (Me), 14.2 (Me), 14.8 (Me), 55.6 (CH), 61.3 (CH2O), 62.4 (CH2O), 62.8 (CH2O), 102.5 (CH), 106.7 (CH), 121.5 (CH), 122.3 (C), 127.2 (CH), 127.7 (CH), 128.2 (CH), 128.7 (CH), 136.5 (C), 141.8 (C), 142.5 (C), 155.6 (C), 160.8 (C=O), 166.7 (C=O), 183.2 (C=O). MS (EI-MS): m/z (%) = 397 [M] (15), 352 (68), 129 (100), 45 (86). Anal. Calcd for C22H23NO6 (397.42): C 66.49, H 5.83, N 3.52; Found: C 66.63, H 5.98, N 3.73. Methyl 2-Methoxy-1-(4-nitrobenzoyl)-6H-pyrido[2,1-a]isoquinoline-4-carboxylate (5f) Yellow powder; yield: 0.67 g (80%); mp 195–197 °C. IR (KBr): 1738, 1729, 1695, 1593, 1487, 1295 cm–1. 1H NMR (500.1 MHz, CDCl3): δ = 3.78 (s, 3 H, MeO), 3.85 (s, 3 H, MeO), 5.47 (s, 1 H, CH), 5.74 (d, J = 7.8 Hz, 1 H, CH), 5.93 (s, 1 H, CH), 7.22 (d, J = 7.8 Hz, 2 H, 2 CH), 7.29 (d, J = 7.8 Hz, 1 H, CH), 7.36 (t, J = 7.6 Hz, 1 H, CH), 7.42 (t, J = 7.6 Hz, 1 H, CH), 7.52 (d, J = 7.6 Hz, 1 H, CH), 7.63 (d, J = 7.6 Hz, 1 H, CH), 7.98 (d, J = 7.8 Hz, 2 H, 2 CH). 13C NMR (125.7 MHz, CDCl3): δ = 52.6 (MeO), 57.2 (CH), 58.3 (MeO), 101.4 (CH), 105.4 (CH), 113.6 (C), 118.3 (CH), 122.6 (2 CH), 125.7 (CH), 126.2 (CH), 126.8 (CH), 127.3 (CH), 130.2 (2 CH), 134.3 (C), 140.2 (C), 142.3 (C), 143.8 (C), 151.6 (C), 160.3 (C=O), 161.5 (C), 194.2 (C=O). MS (EI-MS): m/z (%) = 418 [M] (15), 387 (64), 129 (100), 31 (100). Anal. Calcd for C23H18N2O6 (418.39): C 66.02, H 4.34, N 6.70; Found: C 66.18, H 4.49, N 6.87.
  • 29 Sabbaghan M. Anaraki Firooz A. Ahmadi VJ. J. Mol. Liq. 2012; 175: 135
  • 30 Mehrabi Matin B. Mortazavi Y. Khodadadi AA. Abbasi A. Anaraki Firooz A. Sens. Act. B: Chem. 2010; 151: 140
  • 31 Pyrimido[1,2-a]quinolines 7ad; General Procedure To a stirred mixture of quinoline (1; 0.258 g, 2 mmol) and the appropriate activated acetylenic diester 2 (2 mmol) was added a mixture of Ph3P (4; 2 mmol), the appropriate alkyl bromide 3 (2 mmol), and ZnO NPs (10 mol%), The resulting mixture was stirred for about 5 h until the reaction was complete (TLC), then H2O (15 mL) was poured onto the reaction mixture and the solids were collected by filtration. The catalyst was separated by washing the solids with EtOAc (2 × 3 mL) and filtering. The product was then obtained by evaporating the EtOAc and washing the residue with Et2O. Methyl 4-[Ethoxy(oxo)acetyl]-3-methoxy-4aH-pyrido[1,2-a]quinoline-1-carboxylate (7a)Yellow powder; yield: 0.72 g (92%); mp 143–145 °C. IR (KBr): 1737, 1733, 1727, 1694, 1576, 1488, 1284 cm–1. 1H NMR (500.1 MHz, CDCl3): δ = 1.08 (t, J = 7.3 Hz, 3 H, Me), 3.78 (s, 3 H, MeO), 3.82 (s, 3 H, MeO), 4.25 (q, J = 7.3 Hz, 2 H, CH2O), 5.22 (d, J = 4.5 Hz, 1 H, CH), 5.78 (s, 1 H, CH), 6.63 (d, J = 7.6 Hz, 1 H, CH), 6.95 (t, J = 7.5 Hz, 1 H, CH), 7.14 (d, J = 7.6 Hz, 1 H, CH), 7.24 (t, J = 7.6 Hz, 1 H, CH), 7.32 (d, J = 7.6 Hz, 1 H, CH), 7.43 (d, J = 7.6 Hz, 1 H, CH). 13C NMR (125.7 MHz, CDCl3): δ = 3.6 (Me), 51.2 (CH), 52.3 (MeO), 58.4 (MeO), 62.3 (CH2O), 102.4 (CH), 115.3 (CH), 116.7 (C), 122.3 (CH), 123.4 (CH), 126.4 (C), 129.7 (CH), 132.2 (CH), 135.6 (CH), 141.2 (C), 144.3 (C), 151.2 (C), 165.2 (C=O), 169.3 (C=O), 182.3 (C=O). MS (EI-MS): m/z (%) = 369 [M] (10), 338 (68), 129 (100), 31 (100). Anal. Calcd for C20H19NO6 (369.37): C 65.03, H 5.18, N 3.79; Found: C 65.22, H 5.38, N 3.96. Ethyl 3-Ethoxy-4-[ethoxy(oxo)acetyl]-4aH-pyrido[1,2-a]quinoline-1-carboxylate (7b)Yellow powder; yield: 0.70 g (90%); mp 147–149 °C. IR (KBr): 1742, 1736, 1727, 1687, 1562, 1485, 1285 cm–1. 1H NMR (500.1 MHz, CDCl3): δ = 1.02 (t, J = 7.3 Hz, 3 H, Me), 1.12 (t, J = 7.4 Hz, 3 H, Me), 1.18 (t, J = 7.4 Hz, 3 H, Me), 4.10 (q, J = 7.4 Hz, 2 H, CH2O), 4.25 (q, J = 7.4 Hz, 2 H, CH2O), 4.28 (q, J = 7.4 Hz, 2 H, CH2O), 5.25 (d, J = 4.3 Hz, 1 H, CH), 5.82 (s, 1 H, CH), 6.75 (d, J = 7.6 Hz, 1 H, CH), 7.03 (t, J = 7.5 Hz, 1 H, CH), 7.15 (d, J = 7.6 Hz, 1 H, CH), 7.28 (t, J = 7.6 Hz, 1 H, CH), 7.34 (d, J = 7.6 Hz, 1 H, CH), 7.46 (d, J = 7.6 Hz, 1 H, CH). 13C NMR (125.7 MHz, CDCl3): δ = 13.6 (Me), 13.8 (Me), 14.6 (Me), 51.7 (CH), 61.7 (CH2O), 62.6 (CH2O), 63.2 (CH2O), 102.3 (CH), 115.4 (CH), 116.5 (C), 122.7 (CH), 123.6 (CH), 126.6 (C), 130.2 (CH), 132.3 (CH), 136.3 (CH), 141.4 (C), 144.7 (C), 151.6 (C), 165.5 (C=O), 169.7 (C=O), 182.5 (C=O). MS (EI-MS): m/z (%) = 397 [M] (15), 352 (84), 129 (100), 45 (88). Anal. Calcd for C22H23NO6 (397.42): C 66.49, H 5.83, N 3.52; Found: C 66.65, H 6.02, N 3.76. Methyl 3-Methoxy-4-(4-methoxybenzoyl)-4aH-pyrido[1,2-a]quinoline-1-carboxylate (7d) Yellow powder; yield: 0.70 g (87%); mp 176–178 °C. IR (KBr): 1735, 1726, 1685, 1587, 1486 cm–1. 1H NMR (500.1 MHz, CDCl3): δ = 3.72 (s, 3 H, MeO), 3.78 (s, 3 H, MeO), 3.85 (s, 3 H, MeO), 5.84 (d, J = 4.3 Hz, 1 H, CH), 5.95 (s, 1 H, CH), 6.86 (d, J = 7.5 Hz, 1 H, CH), 7.04 (d, J = 7.8 Hz, 2 H, 2 CH), 7.12 (d, J = 7.6 Hz, 1 H, CH), 7.23 (t, J = 7.6 Hz, 1 H, CH), 7.32 (t, J = 7.6 Hz, 1 H, CH), 7.32 (t, J = 7.6 Hz, 1 H, CH), 7.38 (d, J = 7.6 Hz, 1 H, CH), 8.12 (d, = 7.8 Hz, 2 H, 2 CH). 13C NMR (125.7 MHz, CDCl3): δ = 51.5 (CH), 52.3 (MeO), 55.4 (MeO), 58.6 (MeO), 101.2 (CH), 105.4 (C), 112.6 (2 CH), 114.3 (CH), 120.3 (CH), 122.4 (CH), 126.3 (C), 130.4 (CH), 132.3 (2 CH), 132.7 (C), 133.4 (CH), 140.6 (CH), 141.8 (C), 142.6 (C), 157.2 (C), 163.4 (C), 169.3 (C=O), 192.5 (C=O). MS (EI-MS): m/z (%) = 403 [M] (10), 372 (74), 129 (100), 31 (100). Anal. Calcd for C24H21NO5 (403.43): C 71.45, H 5.25, N 3.47; Found: C 71.61, H 5.39, N 3.65.