Synlett 2018; 29(04): 489-492
DOI: 10.1055/s-0036-1591512
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Oxidation of Hydrosilanes: A New Method for the Synthesis of Alkyl- and Siloxysilanols

Ashot V. Arzumanyan*
a   Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova st, Moscow 119991, Russian Federation   Email: aav@ineos.ac.ru
,
Irina K. Goncharova
a   Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova st, Moscow 119991, Russian Federation   Email: aav@ineos.ac.ru
b   Moscow Technological University, 78 Vernadsky prosp., 119454 Moscow, Russian Federation
,
Roman A. Novikov
с   Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russian Federation
,
Sergey A. Milenin
d   Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Profsoyuznaya 70, 117393 Moscow, Russian Federation
,
Aziz M. Muzafarov
a   Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova st, Moscow 119991, Russian Federation   Email: aav@ineos.ac.ru
d   Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Profsoyuznaya 70, 117393 Moscow, Russian Federation
› Author Affiliations
This work was supported by a grant of the Russian Science Foundation (RSF grant no. 14-23-00231).
Further Information

Publication History

Received: 04 August 2017

Accepted after revision: 04 October 2017

Publication Date:
03 November 2017 (online)


Abstract

A simple method for the preparation of silanols from the corresponding hydrosilanes is reported. The method employs a commercially available oxidizing system based on CuCO3/t-BuOOH(aq) under relatively mild conditions (80 °C, atmospheric pressure) with acetonitrile as the solvent. Furthermore, we present a method that permits the Si−H group to be oxidized to a Si−OH group not only in triethylsilane, but also in bis(trimethylsiloxy)methylsilane, a siloxy derivative of hydrosilane. The products were isolated in gram amounts in yields of 61–73%.

Supporting Information

 
  • References and Notes

    • 1a Zhang R. Mark JE. Pinhas AR. Macromolecules 2000; 33: 3508
    • 1b Chandrasekhar V. Boomishankar R. Nagendran S. Chem. Rev. 2004; 104: 5847
    • 1c Murugavel R. Walawalkar MG. Dan M. Roesky HW. Rao CN. R. Acc. Chem. Res. 2004; 37: 763
    • 1d Shimojima A. Kuroda K. J. Sol-Gel Sci. Technol. 2008; 46: 307
    • 1e Zhou Q. Yan S. Han CC. Xie P. Zhang R. Adv. Mater. (Weinheim, Ger.) 2008; 20: 2970
    • 1f Denmark SE. Butler CR. J. Am. Chem. Soc. 2008; 130: 3690
    • 2a Lickiss PD. Adv. Inorg. Chem. 1995; 42: 147
    • 2b Lickiss PD. In The Chemistry of Organic Silicon Compounds . Vol. 3, Chap. 12. Rappoport Z. Apeloig Y. Wiley; Chichester: 2001
    • 2c Sieburth SM. Mu W. J. Org. Chem. 1993; 58: 7584
    • 2d Hirabayashi K. Mori A. Hiyama T. Tetrahedron Lett. 1997; 38: 461
  • 3 Duffaut N. Calas R. Mace J.-C. Bull. Soc. Chim. Fr. 1959; 1971
  • 4 Valliant-Saunders K. Gunn E. Shelton GR. Hrovat DA. Borden WT. Mayer JM. Inorg. Chem. 2007; 46: 5212
    • 5a Sommer LH. Arie Ulland L. Parker GA. J. Am. Chem. Soc. 1972; 94: 3469
    • 5b Nagai Y. Honda K. Migita T. J. Organomet. Chem. 1967; 8: 372
  • 6 Lickiss PD. Lucas R. J. Organomet. Chem. 1995; 521: 229
    • 7a Adam W. Mello R. Curci R. Angew. Chem. 1990; 102: 916
    • 7b Grabovskii SA. Kabal’nova NN. Shereshovets VV. Chatgilialoglu C. Organometallics 2002; 21: 3506
    • 7c Kawakami Y. Sakuma Y. Wakuda T. Nakai T. Shirasaka M. Kabe Y. Organometallics 2010; 29: 3281
  • 8 Cavicchioli M. Montanari V. Resnati G. Tetrahedron Lett. 1994; 35: 6329
    • 9a Spialter L. Austin JD. Inorg. Chem. 1966; 5: 1975
    • 9b Spialter L. Austin JD. J. Am. Chem. Soc. 1965; 87: 4406
    • 9c Spialter L. Pazdernik L. Bernstein S. Swansinger WA. Buell GR. Freeburger ME. J. Am. Chem. Soc. 1971; 93: 5682
    • 9d Ouellette RJ. Marks DL. J. Organomet. Chem. 1968; 11: 407
  • 10 Limnios D. Kokotos CG. ACS Catal. 2013; 3: 2239
    • 11a Shi M. Nicholas KM. J. Chem. Res., Synop. 1997; 400
    • 11b Lee Y. Seomoon D. Kim S. Han H. Chang S. Lee PH. J. Org. Chem. 2004; 69: 1741
    • 11c Garcés K. Fernández-Alvarez FJ. Polo V. Lalrempuia R. Pérez-Torrente JJ. Oro LA. ChemCatChem 2014; 6: 1691
    • 11d Aliaga-Lavrijsen M. Iglesias M. Cebollada A. Garcés K. García N. Miguel PJ. S. Fernández-Alvarez J. Pérez-Torrente JJ. Oro LA. Organometallics 2015; 34: 2378
    • 11e Lee M. Ko S. Chang S. J. Am. Chem. Soc. 2000; 122: 12011
    • 11f Mori K. Tano M. Mizugaki T. Ebitania K. Kaneda K. New J. Chem. 2002; 26: 1536
    • 11g Choi E. Lee C. Na Y. Chang S. Org. Lett. 2002; 4: 2369
    • 11h Mitsudome T. Arita S. Mori H. Mizugaki T. Jitsukawa K. Kaneda K. Angew. Chem. 2008; 120: 8056
    • 11i Schubert U. Lorenz C. Inorg. Chem. 1997; 36: 1258
    • 11j Motokura K. Kashiwame D. Miyaji A. Baba T. Org. Lett. 2012; 14: 2642
    • 11k Teo AK. L. Fan WY. RSC Adv. 2014; 4: 37645
    • 11l Matarasso-Tchiroukhine E. J. Chem. Soc., Chem. Commun. 1990; 681
    • 11m Ison EA. Corbin RA. Abu-Omar MM. J. Am. Chem. Soc. 2005; 127: 11938
    • 11n Corbin RA. Ison EA. Abu-Omar MM. Dalton Trans. 2009; 2850
    • 11o Chauhan BP. S. Sarkar A. Chauhan M. Roka A. Appl. Organomet. Chem. 2009; 23: 385
    • 11p Mitsudome T. Noujima A. Mizugaki T. Jitsukawa K. Kanada K. Chem. Commun. 2009; 5302
    • 11q Liu T. Yang F. Li Y. Ren L. Zhang L. Xu K. Wang X. Xu C. Gao J. J. Mater. Chem., A 2014; 2: 245
    • 12a Adam W. Mitchell CM. Saha-Möller CR. Weichold O. J. Am. Chem. Soc. 1999; 121: 2097
    • 12b Adam W. Saha-Möller CR. Weichold O. J. Org. Chem. 2000; 65: 2897
    • 12c Adam W. Mitchell CM. Saha-Möller CR. Weichold O. García H. Chem. Commun. 1998; 2609
    • 12d Adam W. Corma A. García H. Weichold O. J. Catal. 2000; 196: 339
    • 12e Ishimoto R. Kamata K. Mizuno N. Angew. Chem. Int. Ed. 2009; 48: 8900
    • 12f Nojima S. Kamata K. Suzuki K. Yamaguchi K. Mizuno N. ChemCatChem 2015; 7: 1097
    • 12g Anbu N. Dhakshinamoorthy A. Appl. Catal., A 2017; 544: 145
  • 13 Yang Y. Samas B. Kennedy VO. Macikenas D. Chaloux BL. Miller JA. Speer RL. Jr. Protasiewicz J. Pinkerton AA. Kenney ME. J. Phys. Chem. A 2011; 115: 12474
  • 14 Triethylsilanol (2a) Silane 1a (2 g, 17.199 mmol, 1 equiv), 70% aq t-BuOOH (4.44 g, 34.39 mmol, 2 equiv), CuCO3 (0.0106 g, 0.086 mmol, 0.005 equiv), and MeCN (20 mL) were stirred in 50 mL round-­bottomed flask at 80 °C for 9 h. The yield of 2a was determined by GLC (90%). The solvent was then evaporated (150-200 mbar, Тbath = 40 °C), and the residue was dissolved in hexane (60-80 mL). The solution was filtered through a short pad of Celite 545 (0.4–0.5 cm) and the hexane was then evaporated (250-300 mbar, Тbath = 40 °C). Distillation at reduced pressure to give a ­colorless liquid; yield: 1.66 mg (73%); bp 60 °C (23 mbar). 1H NMR (400 MHz, CDCl3): δ = 0.57 (q, J = 7.96 Hz, 6 H); 0.94 (t, J = 8.0 Hz, 9 H); 2.69–2.9 (br s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 5.73; 6.47. 29Si NMR (80 MHz, CDCl3): δ = 18.97. 1,1,1,3,5,5,5-Heptamethyltrisiloxan-3-ol (2b) Silane 1b (1.91 g, 8.59 mmol, 1 equiv), 70% aq t-BuOOH (2.21 g, 17.19 mmol, 2 equiv), CuCO3 (0.0053 g, 0.043 mmol, 0.005 equiv), and MeCN (10 mL) were stirred in 50 mL round-­bottomed flask at 80 °C for 12 h. The yield of 2b was determined by GLC (67%). Another portion of 70% aq t- BuOOH (1.11 g, 8.59 mmol, 1 equiv) was added, and mixture was stirred for a further 6 h at 80 °C. The yield of 2b was again determined by GLC (80%). The solvent was evaporated (150 – 200 mbar, Тbath = 40 °C) and the residue was dissolved in hexane (40–50 mL). The solution was filtered through a short pad of Celite 545 (0.4–0.5 cm) and then the hexane was evaporated (250 – 300 mbar, Тbath = 40 °C). Distillation under reduced pressure gave a colorless liquid; yield: 1.25 g (61%); bp 34 °C (1 mbar). IR (thin film): 3373, 2960, 1256, 1060 cm–1. 1H NMR (400 MHz, CDCl3): δ = 0.07 (s, 3 H); δ = 0.11 (s, 18 H); 2.50 – 2.74 (br s, 1 H). 13C NMR (100 MHz, CDCl3): δ = –2.98, 1.60. 29Si NMR (80 MHz, CDCl3): δ = –54.73; 8.55. HRMS (ESI): m/z [M – H] calcd for C7H21O3Si3: 237.0793; found: 237.0813; [M + Na]+ calcd for C7H22NaO3Si3: 261.0769; found: 261.0765; [M + NH4]+ calcd for C7H26NO3Si3, 256.1215; found: 256.1209.