Synthesis 2018; 50(07): 1535-1545
DOI: 10.1055/s-0036-1591527
paper
© Georg Thieme Verlag Stuttgart · New York

Squaramide-Catalyzed Asymmetric Michael/Cyclization Cascade Reaction of Unsaturated Thiazolidinones and 3-Isothiocyanato Oxindoles: Synthesis of New Bispirocyclic Heterocycles

Yong-Xing Song
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, P. R. of China   Email: dudm@bit.edu.cn
,
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, P. R. of China   Email: dudm@bit.edu.cn
› Author Affiliations
The authors are grateful for financial support from the National Natural­ Science Foundation of China (grant number 21272024).
Further Information

Publication History

Received: 06 November 2017

Accepted after revision: 08 December 2017

Publication Date:
22 January 2018 (online)


Abstract

A highly efficient method for the construction of oxindole-pyrrolidone-thiazolidinone bispirocyclic heterocycles bearing three contiguous chiral centers including two quaternary one via a Michael/cyclization cascade reaction has been developed. Using bifunctional cinchona-derived squaramide as catalyst, the reactions of 3-isothio­cyanato oxindoles with unsaturated thiazolidinone derivatives proceeded smoothly under mild reaction conditions to afford a series of complex chiral oxindole-pyrrolidone-thiazolidinone bispirocyclic heterocycles in high yields (up to 99%) with excellent diastereo- and enantioselectivities (up to >99:1 dr, >99% ee).

Supporting Information

 
  • References

    • 1a Francke W. Kitching W. Curr. Org. Chem. 2001; 5: 233
    • 1b Nicholas GM. Eckman LL. Newton GL. Bioorg. Med. Chem. 2003; 11: 601
    • 1c Pigge FC. Coniglio JJ. Dalvi R. J. Am. Chem. Soc. 2006; 128: 3498
    • 1d Huang J. Frontier AJ. J. Am. Chem. Soc. 2007; 129: 8060
    • 1e Companyó X. Zea A. Alba AN. R. Mazzanti A. Moyano A. Rios R. Chem. Commun. 2010; 46: 6953
    • 1f Cassani C. Tian X. Escudero-Adán EC. Melchiorre P. Chem. Commun. 2011; 47: 233
    • 1g Rios R. Chem. Soc. Rev. 2012; 41: 1060
    • 2a Nicolaou KC. Vourloumis D. Winssinger N. Baran PS. Angew. Chem. Int. Ed. 2000; 39: 44; Angew. Chem. 2000, 112, 46
    • 2b Nicolaou KC. Edmonds DJ. Bulger PG. Angew. Chem. Int. Ed. 2006; 45: 7134; Angew. Chem. 2006, 118, 7292
    • 2c Kotha S. Deb AC. Lahiri K. Manivannan E. Synthesis 2009; 165
    • 2d Li JW. Vederas JC. Science 2009; 325: 161
    • 2e Gaich T. Baran PS. J. Org. Chem. 2010; 75: 4657
    • 2f Franz AK. Hanhan NV. Ball-Jones NR. ACS Catal. 2013; 3: 540
    • 3a Bhattarai BR. Kafle B. Hwang JS. Khadka D. Lee SM. Kang JS. Ham SW. Han IO. Park H. Cho H. Bioorg. Med. Chem. Lett. 2009; 19: 6161
    • 3b Mendgen T. Steuer C. Klein CD. J. Med. Chem. 2012; 55: 743
  • 4 Patil V. Tilekar K. Mehendale-Munj S. Mohan R. Ramaa CS. Eur. J. Med. Chem. 2010; 49: 4539
    • 5a El-Feky SA. Pharmazie 1993; 48: 894
    • 5b Momose Y. Maekawa T. Yamano T. Kawada M. Odaka H. Ikeda H. Sohda T. J. Med. Chem. 2002; 45: 1518
    • 5c Bozdağ-Dündar O. Özgen Ö. Menteşe A. Altanlar N. Atli O. Kendi E. Ertan R. Bioorg. Med. Chem. 2007; 15: 6012
    • 5d Pattan SR. Alagwadi KR. Bhat AR. Reddy VV. K. Pattan JS. Khade AB. Bhatt KG. Indian Drugs 2008; 45: 532
    • 5e Barros CD. Amato AA. de Oliveira TB. Iannini KB. R. da Silva AL. da Silva TG. Leite ES. Bioorg. Med. Chem. 2010; 18: 3805
    • 5f Swathi N. Ramu Y. Subrahmanyam CV. S. Satyanarayana K. Int. J. Pharm. Sci. 2012; 4: 561
    • 5g Alegaon SG. Alagawadi KR. Med. Chem. Res. 2012; 21: 816
  • 6 Sorbera LA. Rabasseda X. Castaner J. Drugs Future 1998; 23: 977
  • 7 Qin Z.-Q. Zhang J. Xu B. Chen L.-L. Wu Y. Yang X.-M. Shen X. Molin S. Danchin A. Jiang H.-L. Qu D. BMC Microbiol. 2006; 6: 96
  • 8 Lugovskoy AA. Degterev AI. Fahmy AF. Zhou P. Gross JD. Yuan J. Wagner G. J. Am. Chem. Soc. 2002; 124: 1234
  • 9 Crosignani S. Page P. Missotten M. Colovray V. Cleva C. Arrighi JF. Atherall J. Macritchie J. Martin T. Humbert Y. Gaudet M. Pupowicz D. Maio M. Pittet PA. Golzio L. Giachetti C. Rocha C. Bernardinelli G. Filinchuk Y. Scheer A. Schwarz MK. Chollet A. J. Med. Chem. 2008; 51: 2227
    • 10a Ding K. Lu Y.-P. Nikolovska-Coleska Z. Qiu S. Ding Y.-S. Gao W. Stuckey J. Krajewski K. Roller PP. Tomita Y. Parrish DA. Deschamps JR. Wang S.-M. J. Am. Chem. Soc. 2005; 127: 10130
    • 10b Galliford CV. Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748; Angew. Chem. 2007, 119, 8902
    • 10c Trost BM. Brennan MK. Synthesis 2009; 3003
    • 10d Zhou F. Liu Y.-L. Zhou J. Adv. Synth. Catal. 2010; 352: 1381
    • 10e Zhao Y.-J. Liu L. Sun W. Lu J.-F. McEachern D. Li X.-Q. Yu S.-H. Bernard D. Ochsenbein P. Ferey V. Carry J.-C. Deschamps JR. Sun D.-X. Wang S.-M. J. Am. Chem. Soc. 2013; 135: 7223
    • 11a Wu W.-B. Huang H.-C. Yuan X.-Q. Zhu K.-L. Ye J.-X. Chem. Commun. 2012; 48: 9180
    • 11b Zhu K.-L. Huang H.-C. Wu W.-B. Wei Y. Ye J.-X. Chem. Commun. 2013; 49: 2157
    • 11c Yang W.-L. Tang F.-F. He F.-S. Li C.-Y. Yu X.-X. Deng WP. Org. Lett. 2015; 17: 4822
    • 11d Han B. Huang W. Ren W. He G. Wang J.-H. Peng C. Adv. Synth. Catal. 2015; 357: 561

      For selected examples, see:
    • 12a Cao Y.-M. Jiang X.-X. Liu LP. Shen F.-F. Zhang F.-T. Wang R. Angew. Chem. Int. Ed. 2011; 50: 9124; Angew. Chem. 2011, 123, 9290
    • 12b Liu L.-P. Zhong Y. Zhang P.-P. Jiang X.-X. Wang R. J. Org. Chem. 2012; 77: 10228
    • 12c Cao Y.-M. Shen F.-F. Zhang F.-T. Wang R. Chem. Eur. J. 2013; 19: 1184
    • 12d Han W.-Y. Li S.-W. Wu Z.-J. Zhang X.-M. Yuan W.-C. Chem. Eur. J. 2013; 19: 5551
    • 12e Chen Q. Liang J.-Y. Wang S.-L. Wang D. Wang R. Chem. Commun. 2013; 49: 1657
    • 12f Kayal S. Mukherjee S. Eur. J. Org. Chem. 2014; 6696
    • 12g Tan F. Lu L.-Q. Yang Q.-Q. Guo W. Bian Q. Chen J.-R. Xiao W.-J. Chem. Eur. J. 2014; 20: 3415
    • 12h Han W.-Y. Zhao J.-Q. Zuo J. Xu X.-Y. Zhang X.-M. Yuan W.-C. Adv. Synth. Catal. 2015; 357: 3007
    • 12i Wang L.-Q. Yang D.-X. Li D. Liu X.-H. Zhao Q. Zhu R.-R. Zhang B.-Z. Wang R. Org. Lett. 2015; 17: 4260
    • 12j Wang L. Yang D. Li D. Wang R. Org. Lett. 2015; 17: 3004
    • 12k Zhao J.-Q. Zhou M.-Q. Wu Z.-J. Wang Z.-H. Yue D.-F. Xu X.-Y. Zhang X.-M. Yuan W.-C. Org. Lett. 2015; 17: 2238
    • 12l Kayal S. Mukherjee S. Org. Biomol. Chem. 2016; 14: 10175
    • 13a Malerich JP. Hagihara K. Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416
    • 13b Alemán J. Parra A. Jiang H. Jørgensen KA. Chem. Eur. J. 2011; 17: 6890
    • 13c Chauhan P. Mahajan S. Kaya U. Hack D. Enders D. Adv. Synth. Catal. 2015; 357: 253
    • 13d Han X. Zhou HB. Dong C. Chem. Rec. 2016; 16: 897
    • 13e Zhao BL. Li JH. Du DM. Chem. Rec. 2017; 17: 994
  • 14 CCDC 1576948 (3ka) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 15a Liu L. Zhao B.-L. Du D.-M. Eur. J. Org. Chem. 2016; 4711
    • 15b Lin Y. Liu L. Du D.-M. Org. Chem. Front. 2017; 4: 1229
    • 16a Du D. Jiang Y. Xu Q. Shi M. Adv. Synth. Catal. 2013; 355: 2249
    • 16b Wu H. Zhang L.-L. Tian Z.-Q. Huang Y.-D. Wang Y.-M. Chem. Eur. J. 2013; 19: 1747
    • 16c Tan F. Cheng H.-G. Feng B. Zou Y.-Q. Duan S.-W. Chen JR. Xiao W.-J. Eur. J. Org. Chem. 2013; 2071
    • 16d Martínez JI. Villar L. Uria U. Carrillo L. Reyes E. Vicario JL. Adv. Synth. Catal. 2014; 356: 3627
    • 16e Zhao H.-W. Tian T. Li B. Yang Z. Pang H.-L. Meng W. Song X.-Q. Chen X.-Q. J. Org. Chem. 2015; 80: 10380
    • 16f Zhao H.-W. Tian T. Pang H.-L. Li B. Chen X.-Q. Yang Z. Meng W. Song X.-Q. Zhao Y.-D. Liu Y.-Y. Adv. Synth. Catal. 2016; 358: 2619
    • 16g Guo J. Wong MW. J. Org. Chem. 2017; 82: 4362
    • 16h Grayson MN. J. Org. Chem. 2017; 82: 4396
    • 17a Chandrappa S. Prasad SB. Vinaya K. Kumar CA. Thimmegowda NR. Rangappa KS. Invest. New Drugs 2008; 26: 437
    • 17b Dhara K. Paladhi S. Midya GC. Dash J. Org. Biomol. Chem. 2011; 9: 3801
    • 17c Opletalova V. Dolezel J. Kralova K. Pesko M. Kunes J. Jampilek J. Molecules 2011; 16: 5207
    • 17d Shyam SK. Sowjanya S. Jayapal S. Reddy CH. Spandana CS. Int. J. Pharm. Sci. Rev. Res. 2013; 22: 23
    • 17e He X.-Y. Lu L. Qiu J.-Y. Zou P. Yu F. Jiang X.-K. Li L. Jiang S.-B. Liu S.-W. Xie L. Bioorg. Med. Chem. 2013; 21: 7539
    • 17f Wang P. Zhang S.-M. Meng Q.-Y. Liu Y. Shang L.-Q. Yin Z. Org. Lett. 2015; 17: 1361
    • 17g Ma L. Pei H.-Y. Lei L. He L.-H. Chen J.-Y. Liang X.-L. Peng A.-H. Ye H.-Y. Xiang M.-L. Chen L.-J. Eur. J. Med. Chem. 2015; 92: 178
    • 18a Chen W.-B. Wu ZJ. Hu J. Cun L.-F. Zhang X.-M. Yuan W.-C. Org. Lett. 2011; 13: 2472
    • 18b Cai H. Zhou Y. Zhang D. Xu J.-Y. Liu H. Chem. Commum. 2014; 50: 14771
    • 18c Liu H.-L. Jiang Y. Hao J. Tang X.-Y. Shi M. Org. Chem. Front. 2016; 3: 1447
    • 19a Zhu Y. Malerich JP. Rawal VH. Angew. Chem. Int. Ed. 2010; 49: 153; Angew. Chem. 2010, 122, 157
    • 19b Yang W. Du D.-M. Org. Lett. 2010; 12: 5450
    • 19c Yang W. Du D.-M. Adv. Synth. Catal. 2011; 353: 1241