Synlett 2018; 29(10): 1373-1378
DOI: 10.1055/s-0036-1591564
letter
© Georg Thieme Verlag Stuttgart · New York

Selective Diacetoxylation of Disubstituted 1,2,3-Triazoles through Palladium-Catalyzed C–H Activation

Jianhua Yang
Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Kunming 650500, P. R. of China   Email: ynchenghl@163.com   Email: ybjiang@kmust.edu.cn
,
Fen Zhao
Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Kunming 650500, P. R. of China   Email: ynchenghl@163.com   Email: ybjiang@kmust.edu.cn
,
Yaowen Liu
Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Kunming 650500, P. R. of China   Email: ynchenghl@163.com   Email: ybjiang@kmust.edu.cn
,
Fang Luo
Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Kunming 650500, P. R. of China   Email: ynchenghl@163.com   Email: ybjiang@kmust.edu.cn
,
Huiling Cheng*
Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Kunming 650500, P. R. of China   Email: ynchenghl@163.com   Email: ybjiang@kmust.edu.cn
,
Yubo Jiang*
Faculty of Science, Kunming University of Science and Technology, Jingming South Road 727, Kunming 650500, P. R. of China   Email: ynchenghl@163.com   Email: ybjiang@kmust.edu.cn
› Author Affiliations
We are grateful to the National Natural Science Foundation of China (Nos. 21662020 and 21764008) for financial support.
Further Information

Publication History

Received: 25 January 2018

Accepted after revision: 14 March 2018

Publication Date:
12 April 2018 (online)


Abstract

A simple and efficient selective diacetoxylation of 1,4-disubstituted 1,2,3-triazoles by Pd-catalyzed C–H bond activation is described. PhI(OAc)2 was used as an acetyloxy source to convert aromatic sp2 C–H bonds into C–O bonds with high selectivity by employing a 1,2,3-triazole ring as an elegant directing group. A range of 1,2,3-triazoles bearing two acetyloxy groups can be readily synthesized by the reaction.

Supporting Information

 
  • References and Notes

    • 1a Hartwig JF. J. Am. Chem. Soc. 2016; 138: 2
    • 1b Chen Z. Wang B. Zhang J. Yu W. Liu Z. Zhang Y. Org. Chem. Front. 2015; 2: 1107
    • 1c Song G. Li X. Acc. Chem. Res. 2015; 48: 1007
    • 1d Miura M. Satoh T. Hirano K. Bull. Chem. Soc. Jpn. 2014; 87: 751
    • 1e Jin T. Zhao J. Asao N. Yamamoto Y. Chem. Eur. J. 2014; 20: 3554
    • 1f Kuhl N. Schröder N. Glorius F. Adv. Synth. Catal. 2014; 356: 1443
    • 1g Engle KM. Yu J.-Q. J. Org. Chem. 2013; 78: 8927
    • 1h Wencel-Delord J. Glorius F. Nat. Chem. 2013; 5: 369
    • 2a Mkhalid IA. I. Barnard JH. Marder TB. Murphy JM. Hartwig JF. Chem. Rev. 2010; 110: 890
    • 2b Sun C.-L. Li B.-J. Shi Z.-J. Chem. Commun. 2010; 46: 677
    • 2c Cho SH. Kim JY. Kwak J. Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 2d Engle KM. Mei T.-S. Wasa M. Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 2e Neufeldt SR. Sanford MS. Acc. Chem. Res. 2012; 45: 936
    • 2f Li B.-J. Shi Z.-J. Chem. Soc. Rev. 2012; 41: 5588
    • 3a Thirunavukkarasu VS. Kozhushkov SI. Ackermann L. Chem. Commun. 2014; 50: 29
    • 3b Yang Y. Lin Y. Yu R. Org. Lett. 2012; 14: 2874
    • 3c Yang F. Ackermann L. Org. Lett. 2013; 15: 718
    • 3d Taekyu R. Jiae M. Wonseok C. Woo HJ. Phil HL. Org. Lett. 2014; 16: 2810
    • 3e Li XG. Liu K. Zou G. Liu PN. Eur. J. Org. Chem. 2014; 35: 7878
    • 3f Yokoyama Y. Unoh Y. Hirano K. Satoh T. Miura M. J. Org. Chem. 2014; 79: 7649
    • 3g Becker P. Priebbenow DL. Pirwerdjan R. Bolm C. Angew. Chem. Int. Ed. 2014; 53: 269
    • 3h Sadhu P. Alla SK. Punniyamurthy T. J. Org. Chem. 2013; 78: 6104
    • 3i Gutekunst WR. Baran PS. J. Org. Chem. 2014; 79: 2430
    • 3j Ritleng V. Sirlin C. Pfeffer M. Chem. Rev. 2002; 102: 1731
    • 3k Daugulis O. Zaitsev VG. Shabashov D. Pham QN. Lazareva A. Synlett 2006; 2006: 3382
    • 3l Alberico D. Scott ME. Lautens M. Chem. Rev. 2007; 107: 174
    • 3m Chen X. Engle KM. Wang DH. Yu JQ. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 3n Pradal A. Michelet V. Toullec PY. Org. Lett. 2011; 13: 6086
    • 4a Xu Z. Xiang B. Sun P. RSC Adv. 2013; 3: 1679
    • 4b Zhang C. Sun P. J. Org. Chem. 2014; 79: 8457
    • 4c Fan Z. Ni J. Zhang A. J. Am. Chem. Soc. 2016; 138: 8470
    • 4d Moselage M. Li J. Ackermann L. ACS Catal. 2016; 6: 498
    • 4e Wang L. Pan L. Huang Y. Chen Q. Eur. J. Org. Chem. 2016; 18: 3113
    • 4f Jia X. Han J. J. Org. Chem. 2014; 79: 4180
    • 4g Hua Y. Asgari P. Avullala T. Jeon J. J. Am. Chem. Soc. 2016; 138: 7982
    • 4h Shoba VM. Thacker NC. Bochat AJ. Takacs JM. Angew. Chem. Int. Ed. 2016; 55: 1465
    • 4i Hui CG. Xu J. Tetrahedron Lett. 2016; 57: 2692
    • 4j Maji A. Bhaskararao B. Singha S. Sunoj RB. Maiti D. Chem. Sci. 2016; 7: 3147
    • 4k Kalyani D. Dick AR. Anani WQ. Sanford MS. Tetrahedron 2006; 62: 11483
  • 5 Dick AR. Hull KL. Sanford MS. J. Am. Chem. Soc. 2004; 126: 2300
    • 6a Vickers CJ. Mei T.-S. Yu J.-Q. Org. Lett. 2010; 12: 2511
    • 6b Liu Q. Li G. Yi H. Liu J. Wu P. Lei AW. Chem. Eur. J. 2011; 17: 2353
    • 6c Yadav MR. Rit RK. Sahoo AK. Chem. Eur. J. 2012; 18: 5541
    • 6d Wang G.-W. Yuan T.-T. Wu X.-L. J. Org. Chem. 2008; 73: 4717
  • 7 Gou F.-R. Wang X.-C. Huo P.-F. Bi H.-P. Guan Z.-H. Liang YM. Org. Lett. 2009; 11: 5726
  • 8 Ding Q. Ji H. Nie Z. Yang Q. Peng Y. J. Organomet. Chem. 2013; 739: 33
  • 9 Peng Z. Yu Z. Li T. Li N. Wang Y. Song L. Jiang C. Organometallics 2017; 36: 2826
    • 10a Cera G. Haven T. Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 1484
    • 10b Al Mamari HH. Diers E. Ackermann L. Chem. Eur. J. 2014; 20: 9739
    • 10c Gu Q. Al Mamari HH. Grazyk K. Diers E. Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 3868
    • 10d Ye X. He Z. Ahmed T. Weise K. Akhmedov NG. Petersen JL. Shi X. Chem. Sci. 2013; 4: 3712
    • 10e Zhang G. Xie X. Zhu J. Li S. Ding C. Ding P. Org. Biomol. Chem. 2015; 13: 5444
    • 10f Qureshi Z. Kim JY. Bruun T. Lam H. Lautens M. ACS Catal. 2016; 6: 4946
    • 10g Tian X. Yang F. Rasina D. Bauer M. Warratz S. Ferlin F. Vaccaro L. Ackermann L. Chem. Commun. 2016; 52: 9777
    • 10h Jiang Y. Ma X. Zhao F. Han C. Synlett 2017; 28: 713
    • 10i Zhao F. Chen Z. Huang S. Jiang Y. Synthesis 2016; 48: 2105
    • 10j Correa A. Goitia A. Gómez-Bengoa E. Org. Lett. 2017; 19: 962
    • 11a Amblard F. Cho JH. Schinazi RF. Chem. Rev. 2009; 109: 4207
    • 11b Gramlich PM. E. Wirges CT. Manetto A. Carell T. Angew. Chem. Int. Ed. 2008; 47: 8350
    • 11c Speers AE. Cravatt BF. Chem. Biol. 2004; 11: 535
    • 11d Memmel E. Homann A. Oelschlaeger TA. Seibel J. Chem. Commun. 2013; 49: 7301
    • 12a Wang J.-H. Pan C.-W. Li Y.-T. Meng F.-F. Zhou H.-G. Yang C. Zhang Q. Bai C.-G. Chen Y. Tetrahedron Lett. 2013; 54: 3406
    • 12b Xu X. Yan S. Hu J. Guo P. Wei L. Weng X. Zhou X. Tetrahedron 2013; 69: 9870
    • 12c Mallard I. Landy D. Bouchemal N. Fourmentin S. Carbohydr. Res. 2011; 346: 35
    • 12d Stefani HA. Canduzini HA. Manarin F. Tetrahedron Lett. 2011; 52: 6086
    • 13a Englert BC. Bakbak S. Bunz UH. F. Macromolecules 2005; 38: 5868
    • 13b Nandivada H. Jiang X. Lahann J. Adv. Mater (Weinheim, Ger.) 2007; 19: 2197
  • 14 Yao R.-X. Kong L. Yin Z.-S. Qing F.-L. J. Fluorine Chem. 2008; 129: 1003
    • 15a Tron GC. Pirali T. Billington RA. Canonico PL. Sorba G. Genazzani AA. Med. Res. Rev. 2008; 28: 278
    • 15b Moorhouse AD. Moses JE. ChemMedChem 2008; 3: 715
    • 15c Agalave SG. Maujan SR. Pore VS. Chem. Asian. J. 2011; 6: 2696
    • 15d Lallana E. Herves AS. Trillo FF. Sousa-Herves A. Fernandez-Trillo F. Riguera R. Fernandez-Megia E. Pharm. Res. 2012; 29: 1
    • 15e Lallana E. Trillo FF. Herves AS. Sousa-Herves A. Fernandez-Trillo F. Riguera R. Fernandez-Megia E. Pharm. Res. 2012; 29: 902
    • 15f Thirumurugan P. Matosiuk D. Jozwiak K. Chem. Rev. 2013; 113: 4905
  • 16 Cardiel AC. Benson MC. Bishop LM. Louis KM. Yeager JC. Tan Y. Hamers RJ. ACS Nano 2011; 6: 310
  • 17 Hasegawa T. Umeda M. Numata M. Li C. Bae A.-H. Fujisawa T. Haraguchi S. Sakurai K. Shinkai S. Carbohydr. Res. 2006; 341: 35
  • 18 Harju K. Vahermo M. Mutikainen I. Yii-Kauhaluoma J. J. Comb. Chem. 2003; 5: 826
    • 19a He J. Takise R. Fu H. Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 4618
    • 19b Yamajala KD. B. Patil M. Banerjee S. J. Org. Chem. 2015; 80: 3003
    • 19c Wang Z. Kuninobu Y. Kanai M. J. Am. Chem. Soc. 2015; 137: 6140
    • 20a Tirler C. Ackermann L. Tetrahedron 2015; 71: 4543
    • 20b Ackermann L. Potukuchi HK. Landsberg D. Vicente R. Org. Lett. 2008; 10: 3081
    • 20c Ackermann L. Jeyachandran R. Potukuchi HK. Novák P. Büttner L. Org. Lett. 2010; 12: 2056
    • 20d Jeyachandran R. Potukuchi HK. Ackermann L. Beilstein J. Org. Chem. 2012; 8: 1771
    • 20e Shi S. Liu W. He P. Kuang C. Org. Biomol. Chem. 2014; 12: 3576
    • 20f Shi S. Kuang C. J. Org. Chem. 2014; 79: 6105
    • 20g Wang Z. Kuang C. Adv. Synth. Catal. 2014; 356: 1549
    • 20h Liu W. Li Y. Xu B. Kuang C. Org. Lett. 2013; 15: 2342
  • 21 Correa A. Aizpurua JM. Irastorza A. Org. Lett. 2016; 18: 1080
  • 22 Zhao F. Chen Z. Ma X. Huang S. Jiang Y. Tetrahedron Lett. 2017; 58: 614
  • 23 CCDC 1814754 contains the supplementary crystallographic data for compound 2a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 24 Diacetoxyaryltriazines 2a–r; General Procedure A 50 mL pressure tube was charged with the appropriate triazole 1 (0.3 mmol), Pd(OAc)2 (6.7 mg, 0.03 mmol, 10 mmol%), PhI(OAc)2 (483 mg, 1.5 mmol, 5.0 equiv), and DCE (2.0 mL) under N2. The mixture was then stirred at 100 °C for 4 h until triazole 1 was consumed (TLC). The mixture was then mixed with H2O (15 mL) and extracted with EtOAc (3 × 15 mL). The organic layers were combined, washed with brine (3 × 5 mL), dried (Na2SO4), and concentrated under reduced pressure to afford a crude product that was purified by column chromato­graphy (silica gel). 2-[1-(4-Tolyl)-1H-1,2,3-triazol-4-yl]-1,3-phenylene Diacetate (2a) Light-yellow solid; yield: 87 mg (83%); mp 110–111 °C. IR (KBr): 2932, 1766, 1546, 1356, 1230, 1033, 889, 768, 655 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.07 (s, 1 H), 7.63 (d, J = 8.4 Hz, 2 H), 7.44 (t, J = 8.2 Hz, 1 H), 7.35 (d, J = 8.2 Hz, 2 H), 7.14 (d, J = 8.2 Hz, 2 H), 2.44 (s, 3 H), 2.24 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 169.02, 149.21, 139.50, 139.09, 134.58, 130.35, 129.34, 121.34, 120.92, 120.40, 117.81, 77.32, 77.00, 76.68, 21.08, 21.03. HRMS (ESI): m/z [M + H]+ calcd for C19H18N3O4: 352.1292; found: 352.1294. 5-Methyl-2-(1-phenyl-1H-1,2,3-triazol-4-yl)-1,3-phenylene Diacetate (2g) Light-yellow solid; yield: 91 mg (86%); mp 109–110 °C. IR (KBr): 2918, 1766, 1478, 1379, 1196, 1035, 917, 766 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.08 (s, 1 H), 7.75 (dd, J = 8.4, 0.9 Hz, 2 H), 7.55 (dd, J = 10.5, 5.0 Hz, 2 H), 7.46 (dd, J = 8.3, 6.6 Hz, 1 H), 6.95 (s, 2 H), 2.40 (s, 3 H), 2.23 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 169.11, 148.82, 140.24, 139.78, 136.81, 129.80, 128.81, 121.56, 121.04, 120.39, 114.66, 77.32, 77.00, 76.68, 21.21, 21.00. HRMS (ESI): m/z [M + H]+ calcd for C19H18N3O4: 352.1292; found: 352.1295. 5-Methoxy-2-[1-(4-tolyl)-1H-1,2,3-triazol-4-yl]-1,3-phenylene Diacetate (2i) Light-yellow solid: yield: 96 mg (84%,); mp 107–108 °C. IR (KBr): 2921, 1781, 1518, 1378, 1202, 1053, 967, 813 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.00 (s, 1 H), 7.62 (d, J = 8.4 Hz, 2 H), 7.33 (d, J = 8.2 Hz, 2 H), 6.69 (s, 2 H), 3.84 (s, 3 H), 2.43 (s, 3 H), 2.23 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 168.94, 160.16, 149.85, 139.64, 138.95, 134.58, 130.30, 120.78, 120.31, 110.29, 107.13, 77.32, 77.00, 76.68, 55.69, 21.06, 21.03. HRMS (ESI): m/z [M + H]+ calcd for C20H20N3O5: 382.1397; found: 382.1400.