Synlett 2018; 29(11): 1461-1464
DOI: 10.1055/s-0036-1591566
letter
© Georg Thieme Verlag Stuttgart · New York

Facile Two-Step Synthesis of Methyl Bis(2,2,2-trifluoroethyl)phosphonoacetate by Exploiting Garegg–Samuelsson Reaction Conditions

Shigeki Sano*
Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, Tokushima 770-8505, Japan   Email: ssano@tokushima-u.ac.jp
,
Tomoya Matsumoto
Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, Tokushima 770-8505, Japan   Email: ssano@tokushima-u.ac.jp
,
Munehisa Toguchi
Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, Tokushima 770-8505, Japan   Email: ssano@tokushima-u.ac.jp
,
Michiyasu Nakao
Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, Tokushima 770-8505, Japan   Email: ssano@tokushima-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 19 February 2018

Accepted: 14 March 2018

Publication Date:
13 April 2018 (online)


Abstract

A facile two-step synthesis of methyl bis(2,2,2-trifluoroethyl)phosphonoacetate (Still–Gennari reagent) has been developed by exploiting Garegg–Samuelsson reaction conditions. Starting from trimethyl phosphonoacetate, Still–Gennari reagent was prepared in 94% yield via methyl 2-{bis[(trimethylsilyl)oxy]phosphoryl}acetate intermediate. This synthetic procedure was also used to prepare some kinds of Horner–Wadsworth–Emmons reagents and related compounds.

Supporting Information

 
  • References and Notes

  • 1 Edmonds M. Abell A. The Wittig Reaction . In Modern Carbonyl Olefination . Takeda T. Wiley-VCH; Weinheim: 2004
    • 2a Bisceglia J. Á. Orelli LA. Curr. Org. Chem. 2012; 16: 2206
    • 2b Jasem YA. El-Esawi R. Thiemann T. J. Chem. Res. 2014; 38: 453
    • 2c Bisceglia J. Á. Orelli LA. Curr. Org. Chem. 2015; 9: 744
    • 2d Kobayashi K. Tanaka K. Kogen H. Tetrahedron Lett. 2018; 59: 568
  • 3 DeHoff B. Roy M.-N. Methyl Bis(2,2,2-trifluoroethoxy)phosphinylacetate. In e-EROS Encyclopedia of Reagents for Organic Synthesis. Wiley; New York: 2012
    • 4a Siau W.-Y. Zhang Y. Zhao Y. Top. Curr. Chem. 2012; 327 , 33
    • 4b Li JJ. Still–Gennari Phosphonate Reaction. In Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications. 5th ed. Springer; Berlin, Heidelberg: 2014
  • 5 Still WC. Gennari C. Tetrahedron Lett. 1983; 24: 4405
  • 6 Messik F. Oberthür M. Synthesis 2013; 45: 167
    • 7a Sano S. Sumiyoshi H. Handa A. Tokizane R. Nakao M. Tetrahedron Lett. 2015; 56: 4686
    • 7b Nakao M. Tanaka K. Kitaike S. Sano S. Synthesis 2017; 49: 3654
  • 8 Mundy BP. Ellerd MG. Favaloro Jr. FG. In Name Reactions and Reagents in Organic Synthesis . 2nd ed. John Wiley and Sons; Hoboken, NJ: 2005: 268
    • 9a Garegg PJ. Samuelsson B. J. Chem. Soc., Chem. Commun. 1979; 978
    • 9b Garegg PJ. Samuelsson B. Synthesis 1979; 469
    • 9c Garegg PJ. Samuelsson B. Synthesis 1979; 813
    • 9d Garegg PJ. Samuelsson B. J. Chem. Soc., Perkin Trans. 1 1980; 2866
    • 9e Classon B. Garegg PJ. Samuelsson B. Can. J. Chem. 1981; 59: 339
    • 9f Garegg PJ. Johansson R. Ortega C. Samuelsson B. J. Chem. Soc., Perkin Trans. 1 1982; 681
    • 9g Garegg PJ. Johansson R. Samuelsson B. Synthesis 1984; 168
  • 10 Morcillo SP. de Cienfuegos LÁ. Mota AJ. Justicia J. Robles R. J. Org. Chem. 2011; 76: 2277
  • 11 Purohit AK. Pardasani D. Tak V. Kumar A. Jain R. Dubey DK. Tetrahedron Lett. 2012; 53: 3795
    • 12a Grison C. Coutrot P. Comoy C. Balas L. Joliez S. Lavecchia G. Oliger P. Penverne B. Serre V. Hervé G. Eur. J. Med. Chem. 2004; 39: 333
    • 12b Gao J. Ju K.-S. Yu X. Velásquez JE. Mukherjee S. Lee J. Zhao C. Evans BS. Doroghazi JR. Metcalf WW. van der Donk WA. Angew. Chem. Int. Ed. 2014; 53: 1334
  • 13 Preparation of Methyl Bis(2,2,2-trifluoroethyl)phosphonoacetate (Still–Gennari Reagent, 1)5,6 TMSBr (90 μL, 0.691 mmol) was added at r.t. to a solution of trimethyl phosphonoacetate (2; 50.3 mg, 0.276 mmol) in anhydrous CH2Cl2 (0.55 mL). After stirring at r.t. for 5 h under argon, evaporation of the reaction mixture in vacuo gave methyl 2-{bis[(trimethylsilyl)oxy]phosphoryl}acetate (4), which was used without further purification. Ph3P (181 mg, 0.691 mmol) and I2 (175 mg, 0.691 mmol) were added to a solution of 4 in anhydrous CHCl3 (1.8 mL) at r.t. under argon. After stirring at r.t. for 15 min under argon, imidazole (188 mg, 2.76 mmol) was added. The reaction mixture was stirred for 15 min at r.t. and then for 30 min at 50 °C. Afterwards, 2,2,2-trifluoroethanol (79 μL, 1.10 mmol) was added, and the reaction mixture was stirred at 60 °C for 5 h. After filtration of the reaction mixture, the filtrate was evaporated in vacuo to give a crude product 1, which was purified by silica gel [Silica Gel PSQ 60B (Fuji Silysia Chemical)] column chromatography [n-hexane–EtOAc (2:1)] to afford 1 (82.3 mg, 94%) as a colorless oil. IR (neat): 1747, 1265, 1174, 1072, 963 cm–1. 1H NMR (500 MHz, CDCl3): δ = 4.51–4.42 (m, 4 H), 3.78 (s, 3 H), 3.17 (d, 2 J H,P = 21.1 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 165.2 (d, 2 J C,P = 4.5 Hz), 122.5 (qd, 1 J C,F = 277.1 Hz, 3 J C,P = 8.2 Hz), 62.7 (qd, 2 J C,F = 38.2 Hz, 2 J C,P = 5.5 Hz), 53.1, 33.8 (d, 1 J C,P = 145.1 Hz). HRMS (ESI): m/z [M + Na]+ calcd for C7H9F6O5PNa: 340.9990; found: 340.9982. Anal. Calcd for C7H9F6O5P: C, 26.43; H, 2.85. Found: C, 26.28; H, 2.89.
  • 14 Methyl 2-[Bis(phenylthio)phosphoryl]acetate (7f)Colorless oil; yield 79.5 mg (85%). IR (neat): 3059, 2952, 1737, 1473, 1439, 1268, 1220, 1107, 1023, 1002 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.63–7.59 (m, 4 H), 7.45–7.36 (m, 6 H), 3,77 (s, 3 H), 3.30 (d, 2 J H,P = 16.2 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 165.1 (d, 2 J C,P = 4.6 Hz), 136.0 (d, 3 J C,P = 4.4 Hz), 129.8 (d, 5 J C,P = 2.8 Hz), 129.5 (d, 4 J C,P = 2.1 Hz), 125.3 (d, 2 J C,P = 6.5 Hz), 52.8, 42.6 (d, 1 J C,P = 61.4 Hz). HRMS (ESI): m/z [M + Na]+ calcd for C15H15O3PS2Na: 361.0098; found: 361.0069. Anal. Calcd for C15H15O3PS2: C, 53.24; H, 4.47. Found: C, 52.96; H, 4.67.Methyl 2-[Bis(phenylamino)phosphoryl]acetate (7g)Pale yellow columns (CHCl3/n-hexane); mp 115.0–116.0 °C; yield 71.9 mg (86%). IR (KBr): 3330, 3185, 1731, 1602, 1502, 1434, 1397, 1282, 1268, 1242, 1207, 1181, 1106 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.23–7.17 (m, 4 H), 7.16–7.12 (m, 4 H), 6.99–6.93 (m, 2 H), 6.25 (br s, 2 H), 3.65 (s, 3 H), 3.17 (d, 2 J H,P = 19.3 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 168.4 (d, 2 J C,P = 4.5 Hz), 139.5, 129.3, 122.4, 118.9 (d, 2 J C,P = 6.4 Hz), 52.8, 35.9 (d, 1 J C,P = 103.8 Hz). HRMS (ESI): m/z [M + Na]+ calcd for C15H17N2O3PNa: 327.0874; found: 327.0858. Anal. Calcd for C15H17N2O3P: C, 59.21; H, 5.63; N, 9.21. Found: C, 59.18; H, 5.66; N, 8.98.
  • 16 Spinelli D. Petrillo G. Pettigrew JD. Honson NS. Bis(2,2,2-trifluoroethyl)bromophosphonoacetate. In e-EROS Encyclopedia of Reagents for Organic Synthesis. Wiley; New York: 2016
  • 18 Jiang J. Triethyl 2-Fluoro-2-phosphonoacetate. In e-EROS Encyclopedia of Reagents for Organic Synthesis. Wiley; New York: 2006
    • 19a Elkik E. Imbeaux M. Synthesis 1989; 861
    • 19b Patois C. Savignac P. Synth. Commun. 1994; 24: 1317
    • 19c Davis FA. Han W. Murphy CK. J. Org. Chem. 1995; 60: 4730
    • 19d Zhang X. Qiu W. Burton DJ. Tetrahedron Lett. 1999; 40: 2681
    • 19e Marma MS. Khawli LA. Harutunian V. Kashemirov BA. McKenna CE. J. Fluorine Chem. 2005; 126: 1467
  • 20 Ethyl 2-[Bis(2,2,2-trifluoroethoxy)phosphoryl]-2-fluoroacetate (10)Colorless oil; yield 46.1 mg (49%). IR (neat): 2983, 2947, 1770, 1456, 1420, 1374, 1271, 1174, 1068, 1021, 963 cm–1. 1H NMR (500 MHz, CDCl3): δ = 5.34 (dd, 2 J H,F = 46.4 Hz, 2 J H,P = 12.8 Hz, 1 H), 4.60–4.43 (m, 4 H), 4.38 (q, J = 7.1 Hz, 2 H), 1.36 (t, J = 7.2 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 163.4 (dd, 2 J C,F = 21.8 Hz, 2 J C,P = 1.9 Hz), 122.1 (qdd, 1 J C,F = 277.8 Hz, 3 J C,P = 8.0 Hz, 5 J C,F = 5.6 Hz), 84.3 (dd, 1 J C,F = 199.7 Hz, 1 J C,P = 168.0 Hz), 63.5 (qd, 2 J C,F = 38.8 Hz, 2 J C,P = 5.9 Hz), 63.3, 13.9. HRMS (ESI): m/z [M + Na]+ calcd for C8H10F7O5PNa: 373.0052; found: 373.0046. Anal. Calcd for C8H10F7O5P: C, 27.44; H, 2.88. Found: C, 27.49; H, 3.10.