H. SEO, A. LIU, T. F. JAMISON* (MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, USA)

Direct β-Selective Hydrocarboxylation of Styrenes with CO₂ Enabled by Continuous Flow Photoredox Catalysis *J. Am. Chem. Soc.* **2017**, *139*, 13969–13972.

Photoredox-Catalyzed Hydrocarboxylation of Styrenes in Continuous Flow

Significance: Jamison and co-workers present a photoredox-catalyzed hydrocarboxylation of styrenes using CO_2 and pentamethylpiperidine (PMP). The reactions are performed in flow ($t_\mathrm{R}=8$ min) to provide the anti-Markovnikov adducts in moderate to good yields with high degrees of chemo- and regioselectivity. Functional group tolerance and preliminary mechanistic investigations are disclosed.

 SYNFACTS Contributors: Benjamin List, Jennifer L. Kennemur

 Synfacts 2017, 13(12), 1311
 Published online: 17.11.2017

 D0I: 10.1055/s-0036-1591648; Reg-No.: B10017SF

Comment: This method offers a complementary approach to metal-catalyzed hydrocarboxylation reactions of styrenes, which often afford the corresponding Markovnikov adducts. Metal catalysis has recently been used to affect hydrocarboxylation reactions of simple olefins (M. Gaydou, T. Moragas, F. Juliá-Hernández, R. Martin *J. Am. Chem. Soc.* **2017**, *139*, 12161). A similar substrate expansion to simple alkyl olefins would bolster the synthetic capacity of this methodology.

Category

Organo- and Biocatalysis

Key words

photoredox catalysis

continuous flow

hydrocarboxylation

styrenes

phenylpropanoic acids

carbon dioxide

