Synlett 2018; 29(06): 840-844
DOI: 10.1055/s-0036-1591748
letter
© Georg Thieme Verlag Stuttgart · New York

NHPI- and TBAI-Co-Catalyzed Synthesis of Allylic Esters from Toluene Derivatives and Alkenes

Chengliang Li
a   School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. of China
,
Hongmei Deng*
b   Laboratory for Microstructures, Instrumental Analysis and Research Center of Shanghai University, Shanghai 200444, P. R. of China   Email: hmdeng@staff.shu.edu.cn
,
Tao Jin
c   Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. of China   Email: xsjia@mail.shu.edu.cn   Email: lijian@shu.edu.cn
,
Chunju Li
c   Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. of China   Email: xsjia@mail.shu.edu.cn   Email: lijian@shu.edu.cn
,
Xueshun Jia*
a   School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. of China
c   Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. of China   Email: xsjia@mail.shu.edu.cn   Email: lijian@shu.edu.cn
,
Jian Li*
a   School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. of China
c   Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. of China   Email: xsjia@mail.shu.edu.cn   Email: lijian@shu.edu.cn
› Author Affiliations
We thank the National Natural Science Foundation of China (Nos: 21472121, 21272148) for financial support.
Further Information

Publication History

Received: 29 October 2017

Accepted after revision: 06 December 2017

Publication Date:
15 January 2018 (online)


Abstract

An N-hydroxyphthalimide (NHPI) and tetrabutylammonium iodide (TBAI) co-catalyzed oxidative coupling reaction of toluene derivatives and alkenes has been disclosed. This method can serve as a new strategy to access allylic ester using toluene derivatives as oxyacylating reagent. This metal-free protocol also features the readily available starting materials, broad substrate scope, and mild reaction conditions.

Supporting Information

 
  • References and Notes

    • 2a Li Z. Bohle DS. Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 8928
    • 2b Lin S. Song C.-X. Cai G.-X. Wang W.-H. Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 12901
    • 2c Meng Z. Sun S. Yuan H. Lou H. Liu L. Angew. Chem. Int. Ed. 2014; 53: 543
    • 2d Young AJ. White MC. J. Am. Chem. Soc. 2008; 130: 14090
    • 2e Sun S. Li C. Floreancig PE. Lou H. Liu L. Org. Lett. 2015; 17: 1684
    • 2f Zhao S. Yuan J. Li Y.-C. Shi B.-F. Chem. Commun. 2015; 51: 12823
    • 3a Liang Y.-F. Jiao N. Angew. Chem., Int. Ed. 2014; 53: 548
    • 3b Tsang AS.-K. Kapat A. Schoenebeck F. J. Am. Chem. Soc. 2016; 138: 518
    • 3c Liu ZQ. Zhao L. Shang X. Cui Z. Org. Lett. 2012; 14: 3218
    • 3d Zhao JC. Fang H. Zhou W. Han JL. Pan Y. J. Org. Chem. 2014; 79: 3847
    • 3e Su XB. Surry DS. Spandl RJ. Spring DR. Org. Lett. 2008; 10: 2593
    • 4a Quang DN. Hashimoto T. Stadler M. Asakawa Y. J. Nat. Prod. 2004; 67: 1152
    • 4b Ankisetty S. ElSohly HN. Li X.-C. Khan SI. Tekwani BL. Smillie T. Walker L. J. Nat. Prod. 2006; 69: 692
    • 4c Covell DJ. Vermeulen NA. Labenz NA. White MC. Angew. Chem. Int. Ed. 2006; 45: 8217
    • 4d Jogalekar AS. Kriel FH. Shi Q. Cornett B. Cicero D. Snyder JP. J. Med. Chem. 2010; 53: 155
    • 4e Saito T. Fuwa H. Sasaki M. Org. Lett. 2009; 11: 5274
    • 5a Xiang J. Orita A. Otera J. Angew. Chem. Int. Ed. 2002; 41: 4117
    • 5b Zhang L. Luo Y. Fan R. Wu J. Green Chem. 2007; 9: 1022
    • 5c Mohan KV. K. Narender N. Kulkarni SJ. Green Chem. 2006; 8: 368
    • 5d Meyer ME. Ferreira EM. Stoltz BM. Chem. Commun. 2006; 1316
    • 6a Ochiai M. Takeuchi Y. Katayama T. Sueda T. Miyamoto K. J. Am. Chem. Soc. 2005; 127: 12244
    • 6b Dohi T. Maruyama A. Yoshimura M. Morimoto K. Tohma H. Kita Y. Angew. Chem. Int. Ed. 2005; 44: 6193
    • 6c Uyanik M. Yasui T. Ishihara K. Bioorg. Med. Chem. Lett. 2009; 19: 3848
    • 7a Guo S. Yu J.-T. Dai Q. Yang H. Cheng J. Chem. Commun. 2014; 50: 6240
    • 7b Du J. Zhang X. Sun X. Wang L. Chem. Commun. 2015; 51: 4372
    • 8a Kharasch MS. Sosnovsky GN. Yang C. J. Am. Chem. Soc. 1959; 81: 5819
    • 8b Andrus MB. Lashley JC. Tetrahedron 2002; 58: 845
    • 8c Eames J. Watkinson M. Angew. Chem. Int. Ed. 2001; 40: 3567
    • 9a Eames J. Watkinson M. Angew. Chem. Int. Ed. 2001; 40: 3567
    • 9b Zhang B. Zhu SF. Zhou QL. Tetrahedron Lett. 2013; 54: 2665
    • 9c Tan Q. Hayashi M. Adv. Synth. Catal. 2008; 350: 2639
    • 9d Zhou Z. Andrus MB. Tetrahedron Lett. 2012; 53: 4518
    • 10a Chen MS. White MC. J. Am. Chem. Soc. 2004; 126: 1346
    • 10b Chen MS. Prabagaran N. Labenz NA. White MC. J. Am. Chem. Soc. 2005; 127: 6970
    • 10c Delcamp JH. White MC. J. Am. Chem. Soc. 2006; 128: 15076
    • 10d Covell DJ. White MC. Angew. Chem. Int. Ed. 2008; 47: 6448
    • 10e Stang EM. White MC. Nat. Chem. 2009; 1: 547
    • 10f Stang EM. White MC. Angew. Chem. Int. Ed. 2011; 50: 2094
  • 11 Wei W. Zhang C. Xu Y. Wan X. Chem. Commun. 2011; 47: 10827
  • 12 Shi E. Shao Y. Chen S. Hu H. Liu Z. Zhang J. Wan X. Org. Lett. 2012; 14: 3384
    • 13a Li X.-H. Wang X. Antonietti M. ACS Catal. 2012; 2: 2082
    • 13b Wang P. Minegishi T. Ma G. Takanabe K. Satou Y. Maekawa S. Kobori Y. Kubota J. Domen K. J. Am. Chem. Soc. 2012; 134: 2469
    • 13c Zhou W. Zhang L. Jiao N. Angew. Chem. Int. Ed. 2009; 48: 7094
    • 14a Piou T. Neuville L. Zhu J. Angew. Chem. Int. Ed. 2012; 51: 11561
    • 14b Piou T. Bunescu A. Wang Q. Neuville L. Zhu J. Angew. Chem. Int. Ed. 2013; 52: 12385
    • 14c Guo L.-N. Wang S. Duan X.-H. Zhou S.-L. Chem. Commun. 2015; 51: 4803
    • 14d Zhou S.-L. Guo L.-N. Wang S. Duan X.-H. Chem. Commun. 2014; 50: 3589
    • 14e Zhou S.-L. Guo L.-N. Wang H. Duan X.-H. Chem. Eur. J. 2013; 19: 12970
    • 15a Aihara Y. Tobisu M. Fukumoto Y. Chatani N. J. Am. Chem. Soc. 2014; 136: 15509
    • 15b Xie P. Xie Y. Qian B. Zhou H. Xia C. Huang H. J. Am. Chem. Soc. 2012; 134: 9902
    • 15c Liang Y.-F. Li X. Wang X. Yan Y. Feng P. Jiao N. ACS Catal. 2015; 5: 1956
    • 15d Rout SK. Guin S. Ghara KK. Banerjee A. Patel BK. Org. Lett. 2012; 14: 3982
    • 15e Liu H. Laurenczy G. Yan N. Dyson PJ. Chem. Commun. 2014; 50: 341
    • 16a Rout SK. Guin S. Banerjee A. Khatun N. Gogoi A. Patel BK. Org. Lett. 2013; 15: 4106
    • 16b Guin S. Rout SK. Banerjee A. Nandi S. Patel BK. Org. Lett. 2012; 14: 5294
    • 16c Yin Z. Sun P. J. Org. Chem. 2012; 77: 11339
    • 16d Wu Y. Choy PY. Mao F. Kwong FY. Chem. Commun. 2013; 49: 689
    • 16e Xu Z. Xiang B. Sun P. RSC Adv. 2013; 3: 1679
    • 16f Wu Y. Feng L.-J. Lu X. Kwong FY. Luo H.-B. Chem. Commun. 2013; 49: 689
    • 17a Li CL. Deng HM. Li CJ. Jia XS. Li J. Org. Lett. 2015; 17: 5718
    • 17b Li CL. Jin T. Zhang X. Li CJ. Jia XS. Li J. Org. Lett. 2016; 18: 1916
    • 17c Liu ZQ. Zhang XL. Li JX. Li F. Li CJ. Jia XS. Li J. Org. Lett. 2016; 18: 4052
    • 17d Li CL. Deng HM. Jin T. Liu ZQ. Jiang R. Li CJ. Jia XS. Li J. Synthesis 2017; 49: 4350
    • 18a Cheng GS. Deng HM. He X. Gao Y. Li CJ. Jia X. Li J. Eur. J. Org. Chem. 2017; 2017: 4507
    • 18b Jiang H. Tian YM. Tian LM. Li J. RSC Adv. 2017; 7: 32300
    • 18c Tang ZZ. Liu Z. An Y. Jiang RL. Zhang XL. Li CJ. Jia XS. Li J. J. Org. Chem. 2016; 81: 9158
    • 18d Tian YM. Tian LM. Li CJ. Jia XS. Li J. Org. Lett. 2016; 18: 840
    • 18e Tian YM. Tian LM. He X. Li CJ. Jia XS. Li J. Org. Lett. 2015; 17: 4874
    • 18f Su SK. Li CJ. Jia XS. Li J. Chem. Eur. J. 2014; 20: 5905
    • 19a Pan Y. Feng P. Zheng Q.-Z. Liang Y.-F. Lu J.-F. Cui Y. Jiao N. Angew. Chem. Int. Ed. 2013; 52: 5827
    • 19b Shu Z. Ye Y. Deng Y. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2013; 52: 10573
  • 20 During our investigation, a little amount of benzoic acid can be detected in most runs under the optimized conditions. And a large amount of benzoic acid can be obtained in the absence of alkene.
  • 21 Another mechanism involving the addition of acyloxy radical to alkenes followed by H-elimilation is also possible. See: Li X. Xu X. Zhou C. Chem. Commun. 2012; 48: 12240
  • 22 Experimental Procedure and Characterization Data A 50 mL three-necked round-bottom flask equipped with a magnetic stir bar was charged with toluene derivatives 2 (3.0 mmol), olefin 1 (1.0 mmol), NHPI (16.3 mg, 10 mol%), and Bu4NI (36.9 mg, 10 mol%) in MeCN (8 mL) at room temperature. O2 was bubbled into the mixture at 75 °C for 6–12 h. After the reaction was completed, it was monitored by TLC. The resulting solution was poured into NaCl (15 mL), extracted with DCM (twice). The combined organic layers were dried over anhydrous Na2SO4 and solvents were removed in vacuo. The residue was purified by PLC Silica gel plate (eluent: petroleum ether/ethyl acetate = 30:1) to give the desired product. Compound 3a: 123 mg, 61% yield; colorless oil. 1H NMR (400 MHz, CDCl3): δ = 8.07–8.05 (m, 2 H), 7.56–7.52 (m, 1 H), 7.44–7.41 (m, 2 H), 6.02–5.98 (m, 1 H), 5.86–5.82 (m, 1 H), 5.52–5.51 (m, 1 H), 2.17–2.10 (m, 1 H), 2.08–2.02 (m, 2 H), 1.94–1.92 (m, 2 H),1.74–1.61 (m, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 166.2, 132.8, 132.7, 130.8, 129.6, 128.3, 125.7, 68.6, 28.4, 24.9, 18.9 ppm.