Design, Synthesis, and Cytotoxic Evaluation of Etodolac-1,3,4-oxa-diazole-1,2,3-triazole Molecules

Bhaskar Kummaria
Perla Ramesh ${ }^{\text {b }}$ ©
Naveen Polkam ${ }^{\text {a }}$
Shankaraiah Malthum ${ }^{\text {a }}$
M. V. P. S. Vishnuvardhanc
Jaya Shree Anireddy*a

${ }^{\text {a }}$ Centre for Chemical Sciences and Technology Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad-500085, T.S., India
jayashreeaniredy@gmail.com
${ }^{5}$ Natural Products Chemistry Division, Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, T.S., India
${ }^{\text {c }}$ Medicinal chemistry and biotechnology, Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, T.S., India

Received: 03.11.2017
Accepted after revision: 24.12.2017
Published online: 29.01.2018
DOI: 10.1055/s-0036-1591754; Art ID: so-2017-d0054-op
uemescums: ©(1) Θ
Abstract A new series of etodolac-1,3,4-oxadiazole-1,2,3-triazole derivatives was designed and synthesized from commercially available starting materials by employing a simple synthetic sequence. The in vitro evaluation of the synthesized analogues displayed promising cytotoxic activity. Among the tested compounds 7c, 7I, and 7n exhibited highest cytotoxic activity against MCF-7 (breast), A549 (lung), and DU145 (prostate) human cancer cell lines.

Key words synthesis, etodolac, oxadiozoles, triazoles, cytotoxicity

Organic molecules containing 1,3,4-oxadiazole and 1,2,3-triazole nuclei exhibit a broad spectrum of biological properties such as antimicrobial, antitubercular, antiviral, analgesic, and anticancer activities., ${ }^{1,2}$ Particularly, the 1,3,4-oxadiazole heterocyclic nucleus has been widely exploited for a spectrum of therapeutic applications such as antibacterial (Furamizole), antihypertensive (Nesapidil), HIV-integrase inhibition (Raltegravir), and anticancer (Zibotentan) treatments (Figure 1). ${ }^{3}$

Figure 1 1,3,4-Oxadiazole scaffold containing pharmaceuticals

Similarly, the 1,2,3-triazole scaffold is found in pharmaceuticals including the non-nucleoside reverse transcriptase inhibitor tert-butyldimethylsilylspiroaminooxathioledioxide (TSAO) and the anticancer drug (carboxyamidotriazole, CAI) (Figure 2). ${ }^{4,5}$ These heterocyclic scaffolds possess specific properties such hydrogen bonding capability, moderate dipole character and molecular rigidity, and can be constructed through a 'click' chemistry approach. ${ }^{6}$

Figure 2 1,2,3-Triazole scaffold containing pharmaceuticals

Etodolac (1) is a nonsteroidal anti-inflammatory drug used for the treatment of the symptoms of rheumatoid arthritis and osteoarthritis. ${ }^{7}$ It has also been found to exhibit potent antitumor activity against various human cancer cell lines. ${ }^{8}$ Recent studies revealed that etodolac is a selective COX-2 inhibitor, suppressing proliferation and inducing apoptosis in prostate cancer cells with no effect on normal prostate stromal cells. ${ }^{9}$ A literature review suggested that the derivatization of the carboxylate functional group of nonsteroidal anti-inflammatory drugs can result in reduced ulcerogenic potential with retained anti-inflammatory activity. ${ }^{10}$ During the last few decades, various etodolac congeners have been evaluated for their biological activities, including anticancer activity. ${ }^{11}$ Very recently, our research group has reported the synthesis of a novel series of $1,2,3-$ triazole-etodolac derivatives and evaluated their anticancer activity. ${ }^{12}$ Most of these compounds exhibited potent anticancer activity against A549 human lung cancer cell lines.

In recent years, it has also been reported that the incorporation of the 1,2,3-triazole moiety with 1,3,4-oxadiazoles in a single molecule provides promising biological activities. ${ }^{13}$ Therefore, combining etodolac with 1,3,4-oxadiazole and substituted 1,2,3-triazole is predicted to give novel molecules with good cytotoxic activities. In this context, we herein report an efficient synthesis of a series of etodolac derivatives, linking as key fragments 1,3,4-oxadiazole and 1,2,3-triazole scaffolds (Figure 3). The cytotoxic activity of a series of etodolac-1,3,4-oxadiazole-1,2,3-triazoles was based on IC_{50} values obtained against MCF-7 (breast), A549 (lung), and DU-145 (prostate) human cancer cell lines.

Figure 3 Design of etodolac-1,3,4-oxadiazole-1,2,3-triazole derivatives

The target etodolac-1,3,4-oxadiazole-1,2,3-triazole derivatives $\mathbf{7 a - o}$ were synthesized from commercially available etodolac (1) via a conventional five-step sequence as depicted in Scheme 1 and Table 1. The known intermediate etodolac-hydrazide 3 was prepared from etodolac (1) according to the previous reported procedure. ${ }^{11 \mathrm{~b}}$ Etodolachydrazide 3 was transformed into the corresponding 1,3,4-oxadiazole-2-thiol 4 by heating to reflux with carbon disulfide $\left(\mathrm{CS}_{2}\right)$ in ethanolic sodium hydroxide solution. ${ }^{14}$ The structure of compound 4 was confirmed based on proton resonances appearing at $\delta=13.97(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum, indicating the presence of the -SH group. Additionally, the ${ }^{13} \mathrm{C}$ NMR spectrum showed a signal at $\delta=$
163.5 ppm , corresponding to one carbon of the oxadiazole ring. A molecular ion peak at $m / z 344[\mathrm{M}+\mathrm{H}]^{+}$in the ESI mass spectrum further supported the structural assignment. Next, the key intermediate 5, with a terminal alkyne, was prepared through reaction of propargyl bromide with compound $\mathbf{4}$ in dimethylformamide (DMF) using $\mathrm{K}_{2} \mathrm{CO}_{3}$ as base at room temperature. The structure of 5 was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis, indicating the presence of a CH_{2} group at $\delta=3.41 \mathrm{ppm}$ and absence of a peak at $\delta=13.97(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$ in compound $\mathbf{5}$. Additionally, the ${ }^{13} \mathrm{C}$ NMR spectrum showed signals at $\delta=24.02 \mathrm{ppm}$ due to the CH_{2} carbon and terminal alkyne resonances at $\delta=$ 79.91 and 80.61 ppm . Further support was provided by the appearance of a molecular ion at $m / z 382[\mathrm{M}+\mathrm{H}]^{+}$in the ESI mass spectrum.

Scheme 1 Synthesis of etodolac-1,3,4-oxadiazole intermediate

Finally, the 1,2,3-triazol ring of target molecules 7a-o could be constructed by applying a 'click' reaction. 1,3-Dipolar cycloaddition of 5 with a series of substituted phenylazides $\mathbf{6 a - 0}$ in the presence of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and sodium L-ascorbate in DMF at room temperature provided the desired target molecules 7a-o in excellent isolated yields (Table 1). ${ }^{15}$ All synthesized compounds were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectroscopy and mass spectrometry.

Table 1 Synthesis of Etodolac-1,3,4-oxadiazole-1,2,3-triazole Derivatives

6j

7j, 89\%

6k

The novel etodolac-1,3,4-oxadiazole-1,2,3-triazole derivatives $\mathbf{7 a - 0}$ were screened for their in vitro cytotoxicity on three human cancer cell lines, namely MCF-7 (breast), A549 (lung), and DU-145 (prostate), using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The IC_{50} values were determined from the plot of percent inhibition (from control) versus concentration; the results are illustrated in Table 2. Doxorubicin was used as a positive control to validate the MTT assay. Compounds 7c, 71, and $\mathbf{7 n}$ showed promising cytotoxicity against all cancer cell lines, with IC_{50} values ranging from 1.07 to $3.5 \mu \mathrm{M}$, among which the derivatives $7 \mathbf{c}$ and $\mathbf{7 n}$ with a methoxy group at the para-position of the phenyl ring displayed similar activity against all cancer cell lines. The para-methoxy-ortho-nitro phenyl derivative 7c showed the highest potency against both MCF-7 (Breast) and A549 (lung) cancer cell lines, with IC_{50} values of $1.07 \mu \mathrm{M}$ and $1.4 \mu \mathrm{M}$, respectively. It was observed that, only compounds 7a, 7c, 7n, and $7 \mathbf{0}$ showed promising activity against the DU-145 (prostate) cancer cell line, among which derivative 70, with an elec-
tron-withdrawing trifluoromethyl group at the meta-position of the phenyl ring, proved to be optimal with an IC_{50} value of $1.3 \mu \mathrm{M}$. The para-methoxy-ortho-nitro phenyl derivative $\mathbf{7 c}$ showed an IC_{50} value of $1.5 \mu \mathrm{M}$. Compounds 7 d , $\mathbf{7 g}, \mathbf{7 k}$, and $\mathbf{7 m}$, possessing electron-donating methyl groups on the phenyl ring, exhibited lower cytotoxic activities.

Table $2 \mathrm{IC}_{50}(\mu \mathrm{M})$ Against Human Tumor Cell Lines for 7a-o

Compound	MCF-7 (breast cancer)	A549 (lung cancer)	DU-145 (prostate cancer)
7a	47.8	>100	13.3
7b	>100	50.1	17.1
7c	1.07	1.4	1.5
7d	83.1	64.5	63.0
7e	96.6	52.4	>100
7f	15.1	>100	>100
7g	15.3	>100	79.4

Compound	MCF-7 (breast cancer)	A549 (lung cancer)	DU-145 (prostate cancer)
$\mathbf{7 h}$	13.4	81.2	61.6
$\mathbf{7 i}$	28.6	63.0	33.1
$\mathbf{7 j}$	>100	65.6	>100
$\mathbf{7 k}$	>100	>100	46.5
7l	2.6	3.3	3.5
7m	63	79.4	81.2
7n	2.9	3.1	2.9
7o	>100	42.4	1.3
Doxorubicin	0.8	1.2	0.5

In summary, we have demonstrated the design, synthesis, and cytotoxic evaluation of a series of novel etodolac-1,3,4-oxadiazole-1,2,3-triazole derivatives against MCF-7 (breast), A549 (lung), and DU-145 (prostate) cancer cell lines. From the initial screening of the tested compounds, it was observed that some of the analogues were active against human cancer cell lines, with IC_{50} values of $\leq 15 \mu \mathrm{M}$. Cytotoxicity profiling indicated that compounds $\mathbf{7 c}, \mathbf{7 1}$, and 7n show the best cytotoxicity against all three tested cancer cell lines. Notably, the most active compound 7c showed a broad range of cytotoxicity in all three cancer cell lines with a remarkable IC_{50} value of $1.07 \mu \mathrm{M}$ against the MCF-7 (breast cancer) cell line.

5-((1,8-Diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indol-1-yl)meth-yl)-1,3,4-oxadiazole-2-thiol (4)

Etodolac 1,3,4-oxadiazol-2-thione 4 was synthesized from 3 (3 g, 9.93 $\mathrm{mmol})$ by heating to reflux with $\mathrm{KOH}(14.9 \mathrm{mmol})$, and $\mathrm{CS}_{2}(14.9$ mmol) in absolute $\mathrm{EtOH}(30 \mathrm{~mL})$ for 8 h . After completion, the reaction mixture was cooled to r.t. and diluted with ice water (30 mL). Acidification with 1 N HCl with stirring formed a precipitate, which was filtered and dried to give 4.
Yield: $2.9 \mathrm{~g}(80 \%)$; white solid; m.p. $149-153{ }^{\circ} \mathrm{C}$.
FTIR: 3372 (indole), 1250 (C-O-C oxadiazoles stretch), 2549 (SH) cm ${ }^{-1}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.72(\mathrm{t}, \mathrm{J}=7.33 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=$ $7.33 \mathrm{~Hz}, 3 \mathrm{H}), 1.84-1.99(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.95(\mathrm{~m}$, 4 H), 3.28-3.44 (m, 2 H), 3.90-4.11 (m, 2 H), 6.91-7.04 (m, 2 H), 7.29 $(\mathrm{d}, J=7.69 \mathrm{~Hz}, 1 \mathrm{H}), 10.07(\mathrm{~s}, 1 \mathrm{H}), 13.97$ (br. s, 1 H$)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.11,13.65,21.47,23.49,30.49,33.82$, $60.20,75.26,108.03,115.02,118.60,119.54,125.45,126.33,134.03$, $134.35,160.52,171.84$.

1,8-Diethyl-1-((5-(prop-2-yn-1-ylthio)-1,3,4-oxadiazol-2-yl)meth-yl)-1,3,4,9-tetrahydropyrano[3,4-b]indole (5)
Etodolac 1,3,4-oxadiazol-2-thione 4 ($3 \mathrm{~g}, 8.74 \mathrm{mmol}$) was added to a mixture of propargyl bromide ($0.44 \mathrm{~mL}, 4.91 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.5 \mathrm{~g}$, $10.5 \mathrm{mmol})$ in DMF $(30 \mathrm{~mL})$ at r.t. and the mixture stirred for 8 h . The reaction mixture was dissolved in water, extracted with diethyl ether, and the organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was evaporated to give 5.

Yield: 2.7 g (81\%); white solid; m.p. $103-105^{\circ} \mathrm{C}$.
FTIR: 3370, 3271 (indole and hydrazone NH), 3324 (mono-substituted alkyne) cm^{-1}.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.82(\mathrm{t}, J=7.31 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=$ $7.58 \mathrm{~Hz}, 3 \mathrm{H}), 1.94-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{t}$, $J=6.23 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.91(\mathrm{~m}, 4 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~d}, J=6.25 \mathrm{~Hz}$, $2 \mathrm{H}), 3.98-4.15(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=7.58 \mathrm{~Hz}, 1 \mathrm{H})$, 9.10 (br s, 1 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.48,13.66,22.21,24.02,30.88,34.76$, $60.85,75.38,79.91,80.61,109.01,115.85,119.67,120.49,126.02$, 22.6, 126.73, 134.73, 163.14, 165.92.

ESI-MS: $m / z=382[M+H]$.

Synthesis of Etodolac-1,3,4-oxadiazole-1,2,3-triazole Derivatives 7a-o; General Procedure

Terminal alkyne $\mathbf{5}$ was coupled with arylazide $\mathbf{6 a - 0}$ using $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ ($0.049 \mathrm{~g}, 0.2 \mathrm{mmol}$) and sodium l-ascorbate ($0.039 \mathrm{~g}, 0.2 \mathrm{mmol}$) in DMF at r.t. for $20-30$ min to afford the desired compounds 7a-o in good to excellent yields. The reaction was found to be complete within $20-30 \mathrm{~min}$, although no ultrasound or microwave irradiation was used.

1-((5-(((1-(4-Bromophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-1,3,4-oxadiazol-2-yl)methyl)-1,8-diethyl-1,3,4,9-tetrahydropyra-no[3,4-b]indole (7a)

Yield: 0.129 g (86%); white solid; m.p. $172{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.80(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.94-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.90(\mathrm{~m}$, $4 \mathrm{H}), 3.40(\mathrm{~s}, 2 \mathrm{H}), 3.99-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.13(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H})$, $7.01(\mathrm{~d}, J=7.62 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.62 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.62 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.66(\mathrm{~m}, 2 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{br} \mathrm{s}$, 1 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.24,13.76,21.75,23.70,26.22,30.61$, 33.77, 60.40, 75.54, 108.14, 115.19, 118.81, 119.77, 120.80, 121.41, 125.63, 126.51, 128.71, 132.33, 134.52, 135.31, 143.50, 159.96, 163.19, 165.12.

ESI-MS: $m / z=581[M+2 H]$.
1,8-Diethyl-1-((5-(((1-(3-nitrophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-1,3,4-oxadiazol-2-yl)methyl)-1,3,4,9-tetrahydro-pyrano[3,4-b]indole (7b)
Yield: 0.127 g (90\%); pale-yellow solid; m.p. $130-132^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.79(\mathrm{t}, \mathrm{J}=7.33 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=$ $7.58 \mathrm{~Hz}, 3 \mathrm{H}), 1.91-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.91(\mathrm{~m}$, $4 \mathrm{H}), 3.42(\mathrm{~s}, 2 \mathrm{H}), 3.98-4.14(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.10-8.14(\mathrm{~m}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.28-8.32(\mathrm{~m}, 1 \mathrm{H}), 8.57-8.61$ (m, 1 H), 8.83 (br s, 1 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.56,13.75,22.21,24.12,26.61,31.11$, 34.87, 60.90, 75.41, 109.35, 115.34, 116.02, 119.84, 120.70, 121.26, $123.33,125.89,126.12,126.58,130.95,134.55,134.70,137.48$, 144.48, 148.88, 164.01, 165.91.

ESI-MS: $m / z=546[M+H]$.
1,8-Diethyl-1-((5-(((1-(4-methoxy-2-nitrophenyl)-1H-1,2,3-tri-azol-4-yl)methyl)thio)-1,3,4-oxadiazol-2-yl)methyl)-1,3,4,9-tetra-hydropyrano[3,4-b]indole (7c)
Yield: 0.137 g (92\%); pale-yellow solid; m.p. $89-90^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.79(\mathrm{t}, J=7.32 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=$ $7.32 \mathrm{~Hz}, 3 \mathrm{H}), 1.94-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.17$ (m, 1 H), 2.72-2.90 (m, $4 \mathrm{H}), 3.38-3.44(\mathrm{~m}, 2 \mathrm{H})$, $3.94(\mathrm{~s}, 3 \mathrm{H}), 3.99-4.06(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.15$ (m, 1 H), 4.59 (s, 2 H), 6.99 (d, $J=7.01 \mathrm{~Hz}, 1 \mathrm{H}$), 7.05 (d, $J=7.62 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22$ (dd, $J=8.85,8.65 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35 (d, $J=7.85 \mathrm{~Hz}, 1 \mathrm{H}$), $7.43-$ 7.46 (m, 1 H), 7.55 ($\mathrm{d}, \mathrm{J}=2.74 \mathrm{~Hz}, 1 \mathrm{H}$), 7.94 ($\mathrm{s}, 1 \mathrm{H}$), 8.93 (br s, 1 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.51,13.71,22.25,24.11,26.76,31.02$, $34.89,56.38,60.88,75.37,109.21,110.55,115.98,119.33,119.75$, $120.59,122.81,125.35,126.11,126.66,129.41,134.69,134.74$, 143.13, 145.11, 160.92, 163.95, 165.95.

ESI-MS: $m / z=576[M+H]$.
1-((5-(((1-(2,4-Dimethylphenyl)-1H-1,2,3-triazol-4-yl)methyl)-thio)-1,3,4-oxadiazol-2-yl)methyl)-1,8-diethyl-1,3,4,9-tetrahydro-pyrano[3,4-b]indole (7d)
Yield: 0.129 g (94\%); white solid; m.p. $130-131^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.79(\mathrm{t}, J=7.33 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{t}, \mathrm{J}=$ $7.58 \mathrm{~Hz}, 3 \mathrm{H}), 1.92-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.19(\mathrm{~m}, 4 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, 2.71-2.91 (m, 4 H), 3.40 ($\mathrm{s}, 2 \mathrm{H}$), 3.97-4.05 (m, 1 H), 4.06-4.14 (m, $1 \mathrm{H}), 4.61$ (s, 2 H), $6.98-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.35(\mathrm{~d}, J=7.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}$, $1 \mathrm{H}), 9.01$ (brs, 1 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50,13.70,17.66,22.24,24.13,26.90$, $30.98,34.90,60.88,75.35,109.16,115.98,119.75,120.61,124.70$, 125.66, 126.10, 126.66, 127.38, 132.02, 133.14, 133.78, 134.70, 134.76, 140.08, 142.45, 164.16, 165.88 .

ESI-MS: $m / z=529[M+H]$.
1,8-Diethyl-1-((5-(((1-(4-(trifluoromethyl)phenyl)-1H-1,2,3-tri-azol-4-yl)methyl)thio)-1,3,4-oxadiazol-2-yl)methyl)-1,3,4,9-tetra-hydropyrano[3,4-b]indole (7e)
Yield: $0.132 \mathrm{~g}(90 \%)$; white solid; m.p. $141-142{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.71(\mathrm{t}, J=7.32 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=$ $7.56 \mathrm{~Hz}, 3 \mathrm{H}), 1.90-2.0(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.85(\mathrm{~m}, 4 \mathrm{H}), 3.41$ (s, 2 H), 3.91-4.06 (m, 2 H), 4.51 (s, 2 H), 6.92-7.02 (m, 2 H), 7.25-7.31 (m, $1 \mathrm{H}), 7.75$ ((d, $J=7.33 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=7.32 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H})$, 8.90 (br s, 1 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.07,14.90,22.23,24.21,26.89,31.09$, $34.05,60.50,76.06,108.32,114.35,115.93,119.27,120.32,121.02$, $122.68,122.90,125.61,126.32,127.64,127.68,129.04,135.06$, 135.46, 139.69, 144.36, 162.96, 165.70.

ESI-MS: $m / z=569[M+H]$.
1,8-Diethyl-1-((5-(((1-(3-methoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-1,3,4-oxadiazol-2-yl)methyl)-1,3,4,9-tetrahydro-pyrano[3,4-b]indole (7f)
Yield: $0.129 \mathrm{~g}(94 \%)$; white solid; m.p. $140-141^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.80(\mathrm{t}, J=7.32 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=$ $7.62 \mathrm{~Hz}, 3 \mathrm{H}), 1.96-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.89(\mathrm{~m}$, 4 H), 3.39-3.42 (m, 2 H), 3.89 (s, 3 H), 3.99-4.05 (m, 1 H), 4.07-4.13 (m, 1 H$), 4.59(\mathrm{~s}, 2 \mathrm{H}), 6.96-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.30-$ 7.41 (m, 3 H), 8.11 (s, 1 H$), 8.93$ (br s, 1 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.58,13.74,22.24,24.14,26.83,31.03$, 34.90, 55.61, 60.88, 75.37, 106.41, 109.22, 112.37, 114.73, 115.98, $119.78,120.64,121.34,126.15,126.64,130.49,134.71,137.78$, 143.48, 160.57, 164.12, 165.86 .

ESI-MS: $m / z=531[M+H]$.

1,8-Diethyl-1-((5-(((1-(o-tolyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-1,3,4-oxadiazol-2-yl)methyl)-1,3,4,9-tetrahydropyrano[3,4-b]indole (7 g)
Yield: $0.122 \mathrm{~g}(92 \%)$; brown solid; m.p. 99-101 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.79(\mathrm{t}, J=7.32 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=$ $7.62,3 \mathrm{H}), 1.93-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.72-$ 2.78 (m, 1 H$), 2.80-2.89(\mathrm{~m}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 3.98-4.04(\mathrm{~m}, 1 \mathrm{H})$, 4.06-4.12 (m, 1 H), $4.61(\mathrm{~s}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}$, $J=7.62 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 9.01$ (br s, 1 H$)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50,13.69,17.77,22.21,24.10,26.83$, $31.94,34.84,60.86,75.37,109.15,115.95,119.73,120.59,124.65$, $125.85,126.08,126.64,126.89,129.93,131.45,133.48,134.70$, 136.16, 142.59, 164.12, 165.87.

ESI-MS: $m / z=515[M+H]$.

1-((5-(((1-(4-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-1,3,4-oxadiazol-2-yl)methyl)-1,8-diethyl-1,3,4,9-tetrahydropyra-no[3,4-b]indole (7 h)

Yield: $0.129 \mathrm{~g}(93 \%)$; white solid; m.p. $180-181^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.80(\mathrm{t}, J=7.21 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=$ $7.58 \mathrm{~Hz}, 3 \mathrm{H}), 1.95-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.91(\mathrm{~m}$, $4 \mathrm{H}), 3.40(\mathrm{~s}, 2 \mathrm{H}), 3.98-4.05(\mathrm{~m}, 1 \mathrm{H}), 4.06-4.13(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H})$, $7.01(\mathrm{~d}, J=7.08 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.33 \mathrm{~Hz}$, $1 \mathrm{H}), 7.47-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.67$ (m, 2 H), 8.11 ($\mathrm{s}, 1 \mathrm{H}), 8.85$ (br s, 1 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.01,13.58,21.48,23.42,25.98,30.36$, $33.45,60.11,75.34,107.77,114.89,118.49,119.46,120.68,120.93$, $125.38,126.29,129.09,133.58,134.22,134.29,134.60,143.01$, 162.76, 164.83.

ESI-MS: $m / z=535[M+H]$.

1,8-Diethyl-1-((5-(($(1$-(2-methoxypheny))-1H-1,2,3-triazol-4-yl)methyl)thio)-1,3,4-oxadiazol-2-yl)methyl)-1,3,4,9-tetrahydro-pyrano[3,4-b]indole (7i)

Yield: $0.119 \mathrm{~g}(87 \%)$; brown solid; m.p. $82-83^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.78(\mathrm{t}, J=7.33 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=$ $7.58 \mathrm{~Hz}, 3 \mathrm{H}), 1.90-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.90(\mathrm{~m}$, $4 \mathrm{H}), 3.41$ (m, 2 H), 3.85 ($\mathrm{s}, 3 \mathrm{H}$), 3.97-4.13 (m, 2 H), 4.61 ($\mathrm{s}, 2 \mathrm{H}$), $6.96-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{~d}, J=7.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.70-$ 7.76 (m, 1 H$), 8.21$ (s, 1 H$), 9.07$ (br s, 1 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50,13.70,22.22,24.09,26.98,30.99$, $34.83,55.88,60.86,75.41,109.12,112.17,115.93,119.71,120.56$, 121.17, 125.22, 125.37, 125.98, 126.09, 126.68, 130.24, 134.75, 141.90, 151.02, 164.12, 165.80.

ESI-MS: $m / z=531[M+H]$.
1,8-Diethyl-1-((5-(($(1-(2-n i t r o p h e n y l)-1 H-1,2,3-t r i a z o l-4-~$ yl)methyl)thio)-1,3,4-oxadiazol-2-yl)methyl)-1,3,4,9-tetrahydro-pyrano[3,4-b]indole (7j)
Yield: $0.126 \mathrm{~g}(89 \%)$; pale-yellow solid; m.p. $112-113^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.67(\mathrm{t}, J=7.36 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{t}, \mathrm{J}=$ $7.55 \mathrm{~Hz}, 3 \mathrm{H}), 1.74-1.89(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.97(\mathrm{~m}$, 4 H), 3.53 ($\mathrm{s}, 2 \mathrm{H}$), 3.91-4.12 (m, 2 H$), 4.50(\mathrm{~s}, 2 \mathrm{H}), 6.91-7.03(\mathrm{~m}, 2 \mathrm{H})$, $7.29(\mathrm{~d}, J=6.98 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=6.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.83(\mathrm{~m}, 2 \mathrm{H})$, $8.04(\mathrm{~d}, J=1.32 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 10.07$ (br s, 1 H$)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.42,13.13,20.85,22.81,25.26,29.74$, 32.78, 59.40, 74.74, 107.02, 114.28, 117.84, 118.81, 123.54, 124.22, $124.79,125.70,126.34,128.28,129.81,132.86,133.72,142.03$, 142.94, 161.78, 164.20.

ESI-MS: $m / z=544[M-H]$.

1-((5-(((1-(2,6-Dimethylphenyl)-1H-1,2,3-triazol-4-yl)meth-yl)thio)-1,3,4-oxadiazol-2-yl)methyl)-1,8-diethyl-1,3,4,9-tetrahy-dropyrano[3,4-b]indole (7k)
Yield: 0.127 g (93\%); light-brown solid; m.p. $142-143^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.79(\mathrm{t}, J=7.32 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=$ $7.58 \mathrm{~Hz}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 6 \mathrm{H}), 1.96-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.17(\mathrm{~m}, 1 \mathrm{H})$, 2.71-2.90 (m, 4 H), $3.40(\mathrm{~s}, 2 \mathrm{H}), 3.97-4.05(\mathrm{~m}, 1 \mathrm{H}), 4.06-4.13(\mathrm{~m}$, $1 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=7.09 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.58 \mathrm{~Hz}, 1 \mathrm{H})$, 7.15 (d, $J=7.58 \mathrm{~Hz}, 2 \mathrm{H}$), 7.28-7.37 (m, 2 H), 7.75 ($\mathrm{s}, 1 \mathrm{H}$), 9.03 (br s, 1 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.48,13.69,17.26,22.22,24.10,26.96$, 30.96, 34.84, 60.86, 75.37, 109.12, 115.93, 119.72, 120.59, 124.92, $126.66,128.41,130.09,134.73,135.25,135.60,142.67,164.03$, 165.92.

ESI-MS: $m / z=529[M+H]$.

1,8-Diethyl-1-((5-(((1-phenyl-1H-1,2,3-triazol-4-yl)methyl)thio)-1,3,4-oxadiazol-2-yl)methyl)-1,3,4,9-tetrahydropyrano[3,4-b]indole (7l)
Yield: $0.117 \mathrm{~g}(90 \%)$; white solid; m.p. $161-163^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.80(\mathrm{t}, J=7.32,3 \mathrm{H}$), $1.33(\mathrm{t}, J=7.58$, $3 \mathrm{H}), 1.94-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.81-$ $2.91(\mathrm{~m}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 3.98-4.06(\mathrm{~m}, 1 \mathrm{H}), 4.06-4.14(\mathrm{~m}, 1 \mathrm{H})$, $4.60(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=7.09 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (d, $J=7.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{~d}, J=7.70 \mathrm{~Hz}, 2 \mathrm{H}), 8.13(\mathrm{~s}$, 1 H), 8.94 (br s, 1 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.53,13.75,22.23,24.13,26.82,31.04$, 34.87, 60.88, 75.39, 109.22, 115.92, 119.77, 120.53 (2C), 120.64, 121.28, 126.11, 126.64, 128.92 (3C), 129.72, 134.71, 136.77, 143.56, 164.15, 165.87.

ESI-MS: $m / z=501[M+H]$.

1,8-Diethyl-1-((5-(((1-(m-tolyl)-1H-1,2,3-triazol-4-yl)meth-yl)thio)-1,3,4-oxadiazol-2-yl)methyl)-1,3,4,9-tetrahydropyra-no[3,4-b]indole (7m)

Yield: 0.122 g (92\%); white solid; m.p. 156-158 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.79(\mathrm{t}, \mathrm{J}=7.32 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=$ $7.62 \mathrm{~Hz}, 3 \mathrm{H}), 1.94-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$, 2.72-2.90 (m, 4 H$), 3.41(\mathrm{~s}, 2 \mathrm{H}), 3.99-4.05(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.13(\mathrm{~m}$, $1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=7.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.62 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.08 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (s, 1 H), 8.11 (s, 1 H), 8.96 ($\mathrm{s}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.61,13.71,21.52,22.24,24.16,26.87$, 31.99, 34.87, 60.90, 75.39, 109.19, 115.98, 119.77, 120.51, 124.68, 125.87, 126.01, 126.69, 126.84, 129.97, 131.41, 133.47, 134.77, 136.11, 142.55, 164.17, 165.89.

ESI-MS: $m / z=515[M+H]$.
1,8-Diethyl-1-((5-(((1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-1,3,4-oxadiazol-2-yl)methyl)-1,3,4,9-tetrahydro-pyrano[3,4-b]indole (7n)
Yield: $0.125 \mathrm{~g}(91 \%)$; white solid; m.p. $168-169^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.68(\mathrm{t}, J=7.15 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=$ $7.15 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.85(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.93(\mathrm{~m}$, $4 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.89-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.98-$ 4.09 (m, 1 H), 4.47 ($\mathrm{s}, 2 \mathrm{H}$), 6.87-6.97 (m, 2 H), 7.04 (d, J = 8.43 Hz , $2 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=7.33 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 2 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H})$, 10.45 (br s, 1 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.33,13.00,20.69,22.64,25.31,29.57$, 32.59, 54.16, 59.19, 74.57, 106.77, 113.33, 114.11, 117.64, 118.61, $120.21,120.48,124.63,125.53,128.68,133.53,133.61,158.21$, 161.74, 163.97.

ESI-MS: $m / z=531[M+H]$.

1,8-Diethyl-1-((5-(((1-(3-(trifluoromethyl)phenyl)-1H-1,2,3-tri-azol-4-yl)methyl)thio)-1,3,4-oxadiazol-2-yl)methyl)-1,3,4,9-tetra-hydropyrano[3,4-b]indole (7o)
Yield: $0.132 \mathrm{~g}(90 \%)$; white solid; m.p. $146-148{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.79(\mathrm{t}, J=7.31 \mathrm{~Hz}, 3 \mathrm{H}), 1.91-2.07(\mathrm{~m}$, $1 \mathrm{H}), 2.12-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.92(\mathrm{~m}, 4 \mathrm{H}), 3.38-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.90$ (s, 3 H$), 3.96-4.07(\mathrm{~m}, 1 \mathrm{H}), 4.04-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 6.94-$ 7.09 (m, 3 H), 7.15-7.24 (m, 1H), 7.28-7.42 (m, 3 H$), 8.12$ (s, 1 H$)$, 8.92 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.53,13.78,22.27,24.11,26.81,31.04$, 34.89, 60.90, 75.34, 109.26, 114.74, 115.94, 119.74, 120.56, 120.68, 121.32, 123.72, 125.61, 126.55, 127.54, 130.50, 134.70, 135.74, 137.76, 143.45, 162.11, 165.82.

ESI-MS: $m / z=569[M+H]$.

Acknowledgment

B. K. thanks the CSIR-New Delhi for the award of a Senior Research Fellowship and also TEQIP III for laboratory development.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591754.

References

(1) Kamath, P. R.; Dhanya, S.; Abdul, A.; Jees, A. Res. Chem. Intermed. 2016, 42, 5899.
(2) (a) Moulin, A.; Bibian, M.; Blayo, A. L.; Habnouni, S. E.; Martinez, J.; Fehrentz, J. A. Chem. Rev. 2010, 110, 1809. (b) Zhang, K.; Wang, P.; Xuan, L. N.; Fu, X. Y.; Jing, F.; Li, S.; Liu, Y. M.; Chen, B. Q. Bioorg. Med. Chem. Lett. 2014, 24, 5154. (c) Kumar, H.; Javed, S. A.; Khan, S. A.; Amir, M. Eur. J. Med. Chem. 2008, 43, 2688. (d) Gilani, S. J.; Khan, S. A.; Siddiqui, N. Bioorg. Med. Chem. Lett. 2010, 20, 4762. (e) Dawood, K. M.; Farag, A. M.; Abdel-Aziz, H. A. Heteroat. Chem. 2005, 16, 621. (f) Kalhor, M.; Mobinikhaledi, A.; Dadras, A.; Tohidpour, M. J. Heterocycl. Chem. 2011, 48, 1366.
(3) (a) Deepak, S. M.; Shashikant, R. P.; Yalgatti, M. S. Int. J. Pharm. Chem. 2015, 5, 11. (b) Misra, U.; Hitkari, A.; Saxena, A. K.; Gurtu, S.; Shanker, K. Eur. J. Med. Chem. 1996, 31, 629.
(4) Haider, S.; Alam, M. S.; Hamid, H. Inflammation Cell Signal 2014, 01, e95.
(5) (a) Soltis, M. J.; Yeh, H. J.; Cole, K. A.; Whittaker, N.; Wersto, R. P.; Kohn, E. C. Drug Metab. Dispos. 1996, 24, 799. (b) Balfour, J. A.; Buckley, M. M. Drugs 1991, 42, 274.
(6) Xu, J.-M.; Zhang, E.; Shi, X.-J.; Wang, Y.-C.; Yu, B.; Jiao, W.-W.; Guo, Y.-Z.; Liu, H. M. Eur. J. Med. Chem. 2014, 80, 593.
(7) (a) Schnitzer, T. J.; Constantine, G. J. Rheumatol., Suppl. 1997, 47, 23. (b) Spencer-Green, G. J. Rheumatol., Suppl. 1997, 47, 3.
(8) (a) Okamoto, A.; Shirakawa, T.; Bito, T.; Shigemura, K.; Hamada, K.; Gotoh, A.; Fujisawa, M.; Kawabata, M. Urology 2008, 71, 156. (b) Kobayashi, M.; Nakamura, S.; Shibata, K.; Sahara, N.; Shigeno, K.; Shinjo, K.; Naito, K.; Ohnishi, K. Eur. J. Haematol. 2005, 75, 212. (c) Carson, D. A.; Cottam, H. B.; Adachi, S.; Leoni, L. M. US 6,545,034, 2003. (d) Carson, D. A.; Cottam, H. B.; Adachi, S.; Leoni, L. M. US $7,105,560$, 2006. (e) Carson, D. A.; Cottam, H. B.; Adachi, S.; Leoni, L. M. US 7,105, 561, 2006.
(9) (a) Shigemura, K.; Shirakawa, T.; Wada, Y.; Kamidono, S.; Fujisawa, M.; Gotoh, A. Urology 2005, 66, 1239. (b) Kamijo, T.; Sato, T.; Nagatomi, Y.; Kitamura, T. Int. J. Urol. 2001, 8, S35.
(10) (a) Galanakis, D.; Kourounakis, A. P.; Tsiakitzis, K. C.; Doulgkeris, C.; Rekka, E. A.; Gavalas, A.; Kravaritou, C.; Charitos, C.; Kourounakis, P. N. Bioorg. Med. Chem. Lett. 2004, 14, 3639. (b) Kalgutkar, A. S.; Marnett, A. B.; Crews, B. C.; Remmel, R. P. J. Med. Chem. 2000, 43, 2860. (c) Duflos, M.; Nourrisson, M. R.; Brelet, J.; Courant, J.; Le Baut, G.; Grimaud, N.; Petit, J. Y. Eur. J. Med. Chem. 2001, 36, 545. (d) Kalgutkar, A. S.; Crews, B. C.; Rowlinson, S. W.; Garner, C.; Seibert, K.; Marnett, L. J. Science 1998, 280, 1268.
(11) (a) Kobayashi, M.; Nakamura, S.; Shibata, K.; Sahara, N.; Shigeno, K.; Shinjo, K.; Naito, K.; Ohnishi, K. Eur. J. Haematol. 2005, 75, 212. (b) Çıkla, P.; Özsavcı, D.; Bingöl-Özakpınar, Ö.;

Şener, A.; Çevik, Ö.; Özbaş-Turan, S.; Akbuğa, J.; Şahin, F.; Küçükgüzel, Ş. G. Arch. Pharm. 2013, 346, 367. (c) Vyas, S.; Trivedi, P.; Chaturvedi, S. C. Acta Pol. Pharm. 2009, 66, 201. (d) Çıkla, P.; Özsavcı, D.; Bingöl-Özakpınar, Ö.; Şener, A.; Çevik, Ö.; Özbaş-Turan, S.; Akbuğa, J.; Şahin, F.; Küçükgüzel, Ş. G. Arch. Pharm. 2013, 346, 367. (e) Çıkla-Süzgün, P.; Kaushik-Basu, N.; Basu, A.; Arora, P.; Talele, T. T.; Durmaz, I.; Çetin-Atalay, R.; Küçükgüzel, Ş. G. J. Enzyme Inhib. Med. Chem. 2015, 30, 778.
(12) Bhaskar, K.; Naveen, P.; Perla, R.; Hasithashilpa, A.; Perumal, Y.; Jaya, Shree. A.; Sravanthi, D. G.; Bathini, N. B. RSC Adv. 2017, 7, 23680.
(13) (a) Zhang, Y.; Qiao, R.-Z.; Xu, P.-F.; Zhang, Z.-Y.; Wang, Q.; Mao, L.-M.; Yu, K.-B. J. Chin. Chem. Soc. 2002, 49, 369. (b) Dabholkar, V. V.; Gandhale, S. N.; Shinde, N. B. Pharma Chem. 2012, 4, 320. (c) Al-Talib, M.; Orabi, S. A.; Al-Majdalawi, S.; Tashtoush, H. Indian J. Heterocycl. Chem. 1999, 8, 183. (d) Tashtoush, H.; Abuorabi, S.; Ta’an, E.; Al-Talib, M. Asian J. Chem. 1999, 11, 444.
(14) Kumar, R.; Yar, M. S.; Rai, A. K.; Chaturvedi, S. Pharm. Lett. 2013, 5, 366.
(15) (a) Praveena, K. S. S.; Durgaprasad, S.; Babu, N. S.; Akkenapally, A.; Kumar, C. G.; Deora, G. S.; Murthy, N. Y. S.; Mukkanti, K.; Pal, S. Bioorg. Chem. 2014, 53, 8. (b) Mareddy, J.; Nallapati, S. B.; Anireddy, J.; Devi, Y. P.; Mangamoori, L. N.; Kapavarapu, R.; Pal, S. Bioorg. Med. Chem. Lett. 2013, 23, 6721.

