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Abstract The fast and biocompatible ligation of 1,2,4,5-tetrazines
with strained alkenes has found numerous applications in biomedical
sciences. The reactivity of a 1,2,4,5-tetrazine can generally be tuned by
changing its electronic properties by varying the substituents in the 3-
and/or 6-position. An increased reactivity of such bioorthogonal probes
upon conjugation or attachment to a target molecule has not previous-
ly been described. Such an approach would be beneficial, as it would
minimize the impact of residual tetrazine reagents and/or impurities.
Herein, we describe such a ‘kinetic turn-on’ of 1,2,4,5-tetrazines upon
conjugation. On the basis of the significant increase in reactivity follow-
ing N-acylation predicted by quantum chemical calculations, we pre-
pared 3-aminotetrazines and their corresponding acetylated deriva-
tives. An investigation of the reaction kinetics indeed revealed a
remarkable increase in reactivity upon acylation.

Key words click chemistry, tetrazines, kinetics, bioorthogonal chem-
istry, Diels–Alder reaction, acylation

The challenge of engineering chemical transformations
that can proceed within the complex environment of living
systems has led to the research field of bioorthogonal
chemistry.1 To enable a bioorthogonal reaction, the chemi-
cal probes that are involved need to exhibit high reactivity,
high selectivity, biocompatibility, and metabolic stability.
The Staudinger ligation2 and the strain-promoted azide–
alkyne cycloaddition (SPAAC),3 both developed by Bertozzi
and co-workers, were the first bioorthogonal reactions to
be described. The SPAAC ligation is based on Sharpless’s
click chemistry,4 but can proceed without toxic copper(I),
and is therefore suitable for in vivo applications.1

The tetrazine ligation between 1,2,4,5-tetrazines and
strained alkenes such as norbornene or trans-cyclooctene
(TCO; 1) was first described in 2008 by the groups of Fox
and Weissleder.5,6 These inverse electron-demand Diels–Al-
der (IEDDA)-initiated ligations (Figure 1) have attracted in-

terest because of their in vivo compatibility, selectivity, and
exceptionally high reaction rates. In recent years, tetrazine
ligations have been applied in the development of numer-
ous applications in biomedical research, including, but not
limited to, (i) bioconjugation;7 (ii) molecular imaging of pro-
teins,8–10 surface antigens,11 small molecules/modified
drugs,12,13 lipids,14 or glycans;15 (iii) cell modification with
nanomaterials for clinical diagnostics;16 (iv) the develop-
ment of smart fluorogenic probes;17–20 (v) bioorthogonal
approaches to the identification of drug targets in living
cells;21 and (vi) healthcare materials.22 Additionally, the
outstanding reaction kinetics of tetrazine ligations have led
to an emerging application of bioorthogonal chemistry in
the fields of radiolabeling (in vitro click) and pretargeted
single-proton emission computed tomography or positron
emission tomography (in vivo click), in which high reaction
rates are essential due to the very low concentrations of the
radiolabeled compounds in vivo.23–26

Second-order rate constants of up to 3.3 × 106 M–1 s–1

(25 °C, H2O) have been reported for the ligation of tetra-
zines with highly strained trans-cyclooctenes (TCOs) as
dienophiles;27 this makes the tetrazine/TCO ligation the
fastest bioorthogonal reaction to be discovered so far.

Figure 1  Mechanism of the bioorthogonal ligation between trans-cy-
clooctene (1) and 1,2,4,5-tetrazines

The first 1,2,4,5-tetrazines had already been reported by
the end of the nineteenth century by Adolf Pinner, and
were prepared from imino ester hydrochlorides (Pinner
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salts) and hydrazine, which form an amidrazone intermedi-
ate. This reacts with excess hydrazine to give a dihydro-
tetrazine that is finally oxidized to give a 1,2,4,5-tetrazine
(Figure 2a).28

In recent years, tetrazines have most commonly been
synthesized by condensation of two nitrile molecules with
hydrazine, followed by oxidation (Figure 2b).29,30 However,
the preparation of the alkyl-substituted tetrazines by this
method often results in low yields. A major improvement
was achieved by Devaraj and co-workers, who used Lewis
acids for the activation of the nitriles, leading to significant-
ly increased reaction yields.31 A wide variety of aryl- and
alkyl-substituted tetrazines are accessible by using this ap-
proach. A remaining drawback of the Lewis-acid-mediated
tetrazine synthesis is that a statistical mixture is often ob-
tained when different nitriles are used to prepare asym-
metrically substituted tetrazines.32 Alternatively, tetrazines
can be synthesized by nucleophilic aromatic substitution of
precursors mono- or difunctionalized with 3,5-dimethyl-
pyrazolyl or chloro groups (Figure 2c).33,34 In general, these
methods afford tetrazines with decreased or even very low
reactivities. By the 1960s, Takimoto and co-workers had
presented a robust and straightforward method to produce
unsymmetrical 3-aminotetrazines,35 in which 3-azido-
1,2,4-triazole-4-amines are thermally decomposed to give
3-aminotetrazines in good yields (Figure 2d).

The reaction rate constants of tetrazine ligations can be
tuned within a range of several orders of magnitude by
changing the electronic properties of the tetrazine moiety

by varying the substituents in the 3- and 6-positions. In
general, electron-withdrawing substituents increase the re-
activity, whereas electron-donating groups decrease it.36

Tetrazines bearing an amino group are useful because of
their straightforward conjugation to target molecules or the
ease with which they undergo further modification. An
overview of selected amino-functionalized tetrazines and
their respective second-order rate constants for the reac-
tion with TCO (1) is presented in Figure 3.

Aminotetrazine 2 exhibits a low reactivity because of
the electron-donating effect of the NH2 group directly at-
tached to the tetrazine moiety. Dialkyltetrazine 3 shows
only moderate reactivity due to the donating effect of the
alkyl substituents,37 whereas aryl/alkyl-substituted tetra-
zines such as 4 are slightly more reactive.10,37 Monosubsti-
tuted tetrazines such as 5 show high reaction rates because
of a lower steric hindrance;38 the reaction rates are similar
to those of tetrazines bearing electron-withdrawing hetero-
aryl substituents such as pyridyl or pyrimidyl moieties (e.g.,
6).10 However, the applicability of highly reactive tetrazines
is often limited because of their low stability in biological
media.39

When a target molecule is modified with a tetrazine
tag, excess reagent needs to be completely removed before
further application of the conjugate, as unbound tetrazines
compete with the tetrazine-labeled molecule in the reac-
tion with TCO (1). We surmised that a tetrazine showing a
significant increase in IEDDA reactivity upon attachment to
a target molecule (‘kinetic turn-on’) might be highly benefi-
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cial because of the minimalized impact of residual tetrazine
reagent and/or tetrazine impurities. Lengthy purification
procedures could be shortened or even omitted, which
would be of particular importance in cases where short-
lived nuclides (e.g., carbon-11) are involved.

N-Derivatization of aminotetrazines 3–6 is likely to have
only a low, or even no, impact on cycloaddition reactivity
because of the limited influence of the electronic properties
of the 1,2,4,5-tetrazine moiety. In contrast, N-acylation of 2
appeared to be likely to have a pronounced influence on the
reaction kinetics. We therefore investigated the kinetic
turn-on of compound 2 and the 3-aminotetrazines 7 and 8
upon N-acylation. Acetylation affording the corresponding
3-acetamidotetrazines 9–11 (Figure 4) was chosen as a sim-

ple model for conjugation reactions yielding N-acylated 3-
aminotetrazines. Substrates 7 and 8 were chosen because of
their expected higher reactivity compared with the meth-
yltetrazine 2.

Gibbs free energies of activation (ΔG‡) for the reaction of
aminotetrazines 2, 7, and 8 and their respective acetylated
derivatives 9–11 with TCO (1) were calculated by means of
density-functional theory [M06-2X/6-311+G(d,p), gas
phase, Gaussian 09]. The ΔG‡ values for the reaction of
acetylated compounds were around 4 kcal/mol lower than
those of the corresponding aminotetrazines, resulting in a
predicted increase in reactivity of around 600-fold (Table 1).

Figure 2  Methods for the preparation of 1,2,4,5-tetrazines. (a) First 
tetrazine synthesis by Pinner;28 (b) Lewis-acid-mediated tetrazine syn-
thesis;29–31 (c) 3,5-dimethylpyrazol-1-yl- or chloro-substituted tetra-
zines, and subsequent nucleophilic aromatic substitution;33,34 (d) 
Synthesis of unsymmetrical aminotetrazines by thermolytic decompo-
sition of 3-azido-4H-1,2,4-triazol-4-amines.35 Ox = oxidation; 
Nu = nucleophile.32
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Figure 3  Overview of various aminotetrazines used in IEDDA ligations 
and their respective second-order rate constants for reaction with TCO 
(1) at room temperature under aqueous conditions.32,37

Figure 4 : 3-Aminotetrazines 2, 7, and 8, and corresponding 3-acet-
amidotetrazines 9–11
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Table 1  Predicted Gibbs Free Energies of Activation (ΔG‡) for the 
Reactions of 3-Amino- and 3-Acetamidotetrazines with TCO (1)

This increase can be attributed to the electron-with-
drawing effect of the acetamido group in comparison with
the amino group, as reflected in the calculated molecular-
orbital energies [level of theory: HF/6-311+G(d,p)//M06-
2X/6-311+G(d,p)] for the low-lying unoccupied orbitals in-
volved in the reaction. The acetylated compounds show or-
bital energies that are 0.6–0.8 eV lower than those of the
corresponding aminotetrazines (Supporting Information,
Figure S8).

In addition, a distortion/interaction analysis40 was per-
formed for the reaction between TCO (1) and the monosub-
stituted tetrazines 8 and 11. As expected, the acetylated de-
rivative 11 shows a lower free energy of activation and an
earlier transition state. Distortion energies are slightly ele-
vated compared with 8; however, interaction energies are
much more favorable over the whole intrinsic reaction co-
ordinate, thus lowering the energy of activation consider-
ably and leading to an earlier transition state (Supporting
Information, Figure S9).

3-Aminotetrazines 2, 7, and 8 were each prepared in
four steps (Scheme 1). Triaminoguanidine hydrochloride
(13) was prepared from guanidine hydrochloride (12) and
hydrazine hydrate.41 The 3-hydrazino-4H-1,2,4-triazol-4-
amine intermediates 14–16 were synthesized by cyclocon-
densation of 13 with the appropriate carboxylic acid.42 The
crude products were directly converted into the corre-
sponding 3-azido-1,2,4-triazol-4-amines 17–1943 by diazo-
tization of the hydrazino group.44 Aminotetrazoles 2, 7, and
845 were obtained by thermolytic decomposition of the cor-
responding 3-azido-1,2,4-triazoles in overall yields of 12%
(2), 20% (7), and 15% (8).35 Notably, anhydrous hydrazine
(not commercially available in Europe) was not required for
these syntheses. Although we did not encounter any prob-
lems during this study, all compounds with a high nitrogen
content are potentially energetic materials and should be
handled and stored accordingly.

Acetylation was carried out by applying commonly used
esterification protocols, including (i) acetic anhydride, tri-
ethylamine, and 4-(dimethylamino)pyridine,46 (Scheme 2),
or (ii) acetyl chloride and triethylamine (Supporting Infor-
mation),47 to give the N-acetylated tetrazines 9–11. The 20%

yield for compound 9 was due to the formation of a di-
acetylated byproduct (as indicated by LC/MS). The stability
of 11 in phosphate-buffered saline was examined by moni-
toring its absorbance at 525 nm over a period of 24 hours, re-
vealing a recovery of >90% (Supporting Information, Figure S7).

Scheme 2  Synthesis of 3-acetamidotetrazines 9–11

The reactions kinetics of aminotetrazines 2, 7, and 8 and
those of their corresponding N-acetyl derivatives 9–11 with
TCO (1) in 1,4-dioxane at 25 °C were investigated by
stopped-flow measurements. Pseudo-first-order condi-
tions were used (an excess of 1), and the decrease in the
concentration of the tetrazole was monitored by absor-
bance measurement (Supporting Information). The results
revealed a significant ‘kinetic turn-on’ upon N-acylation
(Figure 5).

ΔG‡ [kcal/mol] Predicted increase in 
reactivity 
(‘kinetic turn-on’)R1 R2 = H R2 = Ac

Me 23.1 18.8 660-fold

CF3 18.9 14.9 430-fold

H 21.7 17.4 640-fold
N

N N
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Scheme 1  Synthesis of 3-aminotetrazines 2, 7, and 8
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Figure 5  Stopped-flow measurements showing a significantly 
increased IEDDA reactivity of N-acetylated aminotetrazoles 9–11 in 
comparison with 2, 7, and 8
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The greatest increase in reactivity of 743-fold was ob-
served for compound 10. The second-order rate constant
for the reaction of the most reactive 3-amidotetrazine 11
and TCO (1) was determined to be 9.5 M–1s–1, which is ap-
proximately an order of magnitude greater than that of the
dialkyltetrazines that have been used in many applications
in bioorthogonal chemistry.48–51

3-Aminotetrazines were prepared by a straightforward
method without the need for anhydrous hydrazine, a re-
agent that is not commercially available in Europe. Acetyla-
tion of these compounds by acetic anhydride or acetyl chlo-
ride gave the corresponding 3-acetamidotetrazines. Kinetic
investigations revealed a remarkable ‘kinetic turn-on’ in
agreement with quantum chemical calculations. The most
reactive amidotetrazine 11 was shown to be sufficiently
stable and to react with TCO (1) approximately ten times
faster than dialkyltetrazines. Overall, we are convinced that
the presented concept can be applied in the development of
new bioorthogonal tools, labeling strategies, and improved
protocols.
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