Synlett 2018; 29(01): 01-07
DOI: 10.1055/s-0036-1591862
synpacts
© Georg Thieme Verlag Stuttgart · New York

A Comparative Assessment of Modern Cyclization Methods of Substituted Alkynyl Esters, Ethers, and Acids

Yashar Soltani
School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK   Email: MelenR@cardiff.ac.uk
,
Lewis C. Wilkins
School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK   Email: MelenR@cardiff.ac.uk
,
Rebecca L. Melen*
School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Cymru/Wales, UK   Email: MelenR@cardiff.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 22 October 2017

Accepted after revision: 16 November 2017

Publication Date:
11 December 2017 (online)


These authors contributed equally

Abstract

Naturally occurring heterocycles such as pyrones, dihydropyrones, and isocoumarins have proven to be highly active biological agents with a vast plethora of applications. Therefore, their synthesis has attracted mentionable notice in recent decades. Of particular synthetic use is the cyclization of substituted alkynyl esters. More recently, main group compounds have been studied to affect this synthetic pathway giving access to a large family of heterocyclic derivatives.

 
  • References

    • 1a Yu Y.-M. Yang J.-S. Peng C.-Z. Caer V. Cong P.-Z. Zou Z.-M. Lu Y. Yang S.-Y. Gu Y.-C. J. Nat. Prod. 2009; 72: 921
    • 1b Cui C.-M. Li X.-M. Li C.-S. Proksch P. Wang B.-G. J. Nat. Prod. 2010; 73: 729
    • 2a Claydon N. Allan M. Hanson JR. Avent AG. Trans. Br. Med. Soc. 1987; 88: 503
    • 2b Abraham W.-R. Arfmann H.-A. Phytochemistry 1988; 27: 3310
    • 2c Barrero AF. Oltra JE. Herrador MM. Cabrera E. Sanchez JF. Quílez JF. Rojas FJ. Reyes JF. Tetrahedron 1993; 49: 141
  • 3 Simon A. Dunlop RW. Ghisalberti EL. Sivasithamparam K. Soil Biol. Biochem. 1988; 20: 263
  • 4 Cook L. Ternai B. Ghosh P. J. Med. Chem. 1987; 30: 1017
  • 5 Poppe SM. Slade DE. Chong KT. Hinshaw RR. Pagano PJ. Markowitz M. Ho DD. Mo H. Gorman RR. Dueweke TJ. Thaisrivongs S. Tarpley WG. Antimob. Agents Chemother. 1997; 41: 1058
  • 6 Mali RS. Babu KN. J. Org. Chem. 1998; 63: 2488
  • 7 Barry RD. Chem. Rev. 1964; 64: 229
  • 8 Schlingmann G. Milne L. Carter GT. Tetrahedron 1998; 54: 13013
  • 9 Wang H. Li H. Moore LB. Johnson MD. L. Maglich JM. Goodwin B. Ittoop OR. R. Wisely B. Creech K. Parks DJ. Collins JL. Willson TM. Kalpana GV. Venkatesh M. Xie W. Cho SY. Roboz J. Redinbo M. Moore JT. Mani S. Mol. Endocrinol. 2008; 22: 838
  • 10 Vara Prasad JV. N. Para KS. Lunney EA. Ortwine DF. Dunbar JB. Ferguson D. Tummino PJ. Hupe D. Tait BD. J. Am. Chem. Soc. 1994; 116: 6989
  • 11 Pochet L. Frederick R. Masereel B. Curr. Pharm. Des. 2004; 10: 3781
  • 12 Luo T. Dai M. Zheng S.-L. Schreiber SL. Org. Lett. 2011; 13: 2834
  • 13 Manikandan R. Jeganmohan M. Org. Lett. 2014; 16: 652
  • 14 Boger DL. Mullican MD. J. Org. Chem. 1984; 49: 4033
  • 15 Miura T. Fujioka S. Takemura N. Iwasaki H. Ozeki M. Kojima N. Yamashita M. Synthesis 2014; 46: 496
  • 16 Oliver MA. Gandour RD. J. Org. Chem. 1984; 49: 558
  • 17 Yao T. Larock RC. J. Org. Chem. 2003; 68: 5936
  • 18 De Angelis M. Stossi F. Waibel M. Katzenellenbogen BS. Katzenellenbogen JA. Bioorg. Med. Chem. 2005; 13: 6529
  • 19 Komeyama K. Takahashi K. Takaki K. Org. Lett. 2008; 10: 5119
  • 20 Shi Y. Roth KE. Ramgren SD. Blum SA. J. Am. Chem. Soc. 2009; 131: 18022
  • 21 Wilkins LC. Hamilton HB. Kariuki BM. Hashmi AS. K. Hansmann MM. Melen RL. Dalton Trans. 2016; 45: 5929
  • 22 Mallampudi NA. Reddy GS. Maity S. Mohapatra DK. Org. Lett. 2017; 19: 2074
    • 23a Zhao G. Yuan L.-Z. Roudier M. Peyrat J.-F. Hamze A. Brion J.-D. Provot O. Alami M. Synthesis 2016; 48: 3382
    • 23b Issaian A. Tu KN. Blum SA. Acc. Chem. Res. 2017; 50: 2598
    • 23c Mancuso R. Pomelli CC. Malafronte F. Maner A. Marino N. Chiappe C. Gabriele B. Org. Biomol. Chem. 2017; 15: 4831
    • 24a Wilkins LC. Wieneke P. Newman PD. Kariuki BM. Rominger F. Hashmi AS. K. Hansmann MM. Melen RL. Organometallics 2015; 34: 5298
    • 24b Melen RL. Wilkins LC. Kariuki BM. Wadepohl H. Gade LH. Hashmi AS. K. Stephan DW. Hansmann MM. Organometallics 2015; 34: 4127
  • 25 Faizi DJ. Issaian A. Davis AJ. Blum SA. J. Am. Chem. Soc. 2016; 138: 2126
    • 26a Wilkins LC. Günther BA. R. Walther M. Lawson JR. Wirth T. Melen RL. Angew. Chem. Int. Ed. 2016; 55: 11292
    • 26b Wilkins LC. Günther BA. R. Walther M. Lawson JR. Wirth T. Melen RL. Angew. Chem. Int. Ed. 2016; 128: 11462
    • 27a Izumi T. Morishita N. J. Heterocycl. Chem. 1994; 31: 145
    • 27b Denmark SE. Edwards MG. J. Org. Chem. 2006; 71: 7293
    • 27c Shahzad SA. Wirth T. Angew. Chem. Int. Ed. 2009; 48: 2588
    • 27d Shahzad SA. Venin C. Wirth T. Eur. J. Org. Chem. 2010; 3465
    • 27e Niu W. Yeung Y.-Y. Org. Lett. 2015; 17: 1660
  • 28 Faizi DJ. Davis AJ. Meany FB. Blum SA. Angew. Chem. Int. Ed. 2016; 55: 14286
  • 29 Warner AJ. Churn A. McGough JS. Ingleson MJ. Angew. Chem. Int. Ed. 2017; 56: 354
  • 30 Issaian A. Faizi DJ. Bailey JO. Mayer P. Berionni G. Singleton DA. Blum SA. J. Org. Chem. 2017; 82: 8165
  • 31 Voss T. Chen C. Kehr G. Nauha E. Erker G. Stephan DW. Chem. Eur. J. 2010; 16: 3005
  • 32 Wilkins LC. Lawson JR. Wieneke P. Rominger F. Hashmi AS. K. Hansmann MM. Melen RL. Chem. Eur. J. 2016; 22: 14618
  • 33 Tamke S. Qu Z.-W. Sitte NA. Flörke U. Grimme S. Paradies J. Angew. Chem. Int. Ed. 2016; 55: 4336
    • 34a Lawson JR. Melen RL. Inorg. Chem. 2017; 56: 8627
    • 34b Erker G. Dalton Trans. 2005; 1883
    • 34c Kehr G. Erker G. Chem. Sci. 2016; 7: 56
    • 34d Piers WE. Chivers T. Chem. Soc. Rev. 1997; 26: 345
    • 35a Soltani Y. Wilkins LC. Melen RL. Angew. Chem. Int. Ed. 2017; 56: 11995
    • 35b Soltani Y. Wilkins LC. Melen RL. Angew. Chem. Int. Ed. 2017; 129: 12157