Synthesis 2018; 50(07): 1555-1559
DOI: 10.1055/s-0036-1591881
paper
© Georg Thieme Verlag Stuttgart · New York

Direct and Stereoselective Iron-Catalyzed Amidation of Binor-S with Alkyl and Aryl Cyanides in Water

Ravil I. Khusnutdinov*
Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa, 450075, Russian Federation   Email: khusnutdinovri47@gmail.com
,
Tatyana M. Egorova
Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa, 450075, Russian Federation   Email: khusnutdinovri47@gmail.com
,
Leonard M. Khalilov
Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa, 450075, Russian Federation   Email: khusnutdinovri47@gmail.com
,
Ekaterina S. Meshcheriakova
Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa, 450075, Russian Federation   Email: khusnutdinovri47@gmail.com
,
Usein M. Dzhemilev
Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa, 450075, Russian Federation   Email: khusnutdinovri47@gmail.com
› Author Affiliations
The work was financially supported by the Russian Foundation for Basic Research.
Further Information

Publication History

Received: 10 November 2017

Accepted after revision: 01 December 2017

Publication Date:
11 January 2018 (online)


Abstract

The amidation of heptacyclo[8.4.0.02,12.03,8.04,6.05,9.011,13]tetra­decane (binor-S) with aceto-, propio-, valero-, and benzonitrile was performed in the presence of water and FeCl3·6H2O as catalyst to give the corresponding 10-exo-amidohexacyclo[9.2.1.02,7.03,5.04,8.09,13]tetradecanes. Hydrolysis of 10-exo-acetamidohexacyclo[9.2.1.02,7.03,5.04,8.09,13]tetra­decane with sodium hydroxide in n-butanol afforded 10-exo-aminohexacyclo[9.2.1.02,7.03,5.04,8.09,13]tetradecane in quantitative yield.

Supporting Information

 
  • References

    • 1a Guerinot A. Reymond S. Cossy J. Eur. J. Org. Chem. 2012; 19
    • 1b Jiang D. He T. Ma L. Wang Z. RSC Adv. 2014; 4: 64936
    • 2a Huang H. Ji X. Xiao F. Deng G.-J. RSC Adv. 2015; 5: 26335
    • 2b Vankar YD. Kumaravel G. Rao CT. Synth. Commun. 1989; 19: 2181
  • 3 Kutateladze TG. Mironova AA. Mochalov SS. Shabarov YuS. Zh. Org. Khim. 1990; 26: 1908 ; Chem. Abstr. 1991, 115, 449007
    • 4a Klarke T. Devine J. Diker DW. J. Am. Oil Chem. Soc. 1964; 41: 78
    • 4b Baum JC. Milne JE. Murry JA. Thiel OR. J. Org. Chem. 2009; 74: 2207
    • 4c Von Beger J. J. Prakt. Chem. 1969; 311: 746
    • 4d Audiger L. Watts K. Elmore SC. Robinson RI. Wirth T. ChemSusChem 2012; 5: 257
    • 4e Yanjarappa MJ. Sivaram S. Macromolecules 2004; 37: 8499
    • 4f Sasaki T. Eguchi S. Ishii T. J. Org. Chem. 1970; 35: 2257
    • 5a Norell JR. J. Org. Chem. 1970; 35: 1611
    • 5b Reddy KL. Tetrahedron Lett. 2003; 44: 1453
  • 6 Callens E. Burton AJ. Barrett AG. M. Tetrahedron Lett. 2006; 47: 8699
    • 7a Yu X.-Q. Huang J.-S. Zhou X.-G., Che C.-M. 2000; 2: 2233
    • 7b Kang B. Fu Z. Hong SH. J. Am. Chem. Soc. 2013; 135: 11704
  • 8 Ibrahim N. Hashmi AS. K. Rominger F. Adv. Synth. Catal. 2011; 353: 461
  • 9 Karabulut HR. F. Kacan M. Synth. Commun. 2002; 32: 2345
  • 10 Anxionnat B. Guerinot A. Reymond S. Cossy J. Tetrahedron Lett. 2009; 50: 3470
  • 11 Khusnutdinov RI. Oshnyakova TM. Tetrahedron Lett. 2015; 56: 6368
  • 12 Cataldo F. Eur. Chem. Bull. 2015; 4: 92
  • 13 Khusnutdinov RI. Muslimov ZS. Dzhemilev UM. Nefedov OM. Russ. Chem. Bull. 1993; 42: 692
  • 14 Schrauzer GN. Bastian BN. Fosselius GA. J. Am. Chem. Soc. 1966; 88: 4890