T. Songsichan et al.

Thiocyanation of Pyrazoles Using KSCN/K₂S₂O₈ Combination

T. Songsichan P. Katrun O. Khaikate D. Soorukram M. Pohmakotr

- V. Reutrakul
- C. Kuhakarn* 💷

Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand chutima.kon@mahidol.ac.th

Received: 17.10.2017 Accepted after revision: 16.12.2017 Published online: 23.01.2018 DOI: 10.1055/s-0036-1591891; Art ID: so-2017-d0046-op

Abstract A convenient and practical thiocyanation of pyrazoles is reported employing a combination of KSCN and $K_2S_2O_8$ in dimethyl sulfoxide (DMSO). The salient features of the present reaction include environmentally benign reagents and solvents, and simple operation. The reaction shows wide functional group tolerance and gives moderate to excellent yields.

Key words thiocyanation, pyrazoles, potassium thiocyanate, potassium persulfate, heterocycle

Sulfur-containing organic molecules are important structural motifs in organic synthesis, organic materials, agrochemicals, nanotechnology and pharmaceutically important compounds in which the unique properties stem from the enhanced physical and chemical features of the sulfur atom.¹ Therefore, there are continuing efforts in the development of convenient methods for the introduction of sulfur moieties into organic molecules and materials as well as pharmaceuticals. Among various sulfur-containing substances, thiocyanate derivatives, particularly aryl- and heteroaryl thiocyanates, are an important class of compounds exhibiting pharmacological potential² and serving as versatile synthetic precursors for the synthesis of various organosulfur derivatives such as thiols,³ thioethers,⁴ thiocarbamates,⁵ thioesters,⁶ disulfides,⁷ sulfonic acids,⁶ sulfonyl chlorides,⁸ and sulfonyl cyanides.⁹ A number of synthetic routes are available for the synthesis of aryl- and heteroaryl thiocyanates including coupling of diazonium salts with metal thiocyanates under Sandmeyer type conditions,¹⁰ cyanation of organosulfur and organometallic compounds,¹¹ metal-catalyzed coupling reaction of arylboronic acids with trimethylsilylisothiocyanate (TMSNCS) or aryl halides with thiocyanate salts¹² and the direct thiocyanation of C-H bonds with thiocyanates.¹³ Pyrazoles and their derivatives have attracted increasing interest in the fields of medicine and pharmacology because of their interesting biological properties including antifungal,14 antibacterial,15 anticancer,¹⁶ anti-inflammatory,¹⁷ antiviral,¹⁸ antioxidant,¹⁹ cytotoxic,²⁰ antihypertensive,²¹ antitubercular,²² analgesic,²³ antipyretic,²⁴ anticonvulsant,²⁵ and A3 adenosine receptor antagonistic activities.²⁶ Additionally, pyrazole derivatives are also important in agricultural chemistry.²⁷ Although thiocyanation of arenes and heterocyclic compounds such as indoles, pyrroles, carbazoles, 8-aminoquinolines and imidazopyridines has been reported,²⁸ the thiocyanation of pyrazoles has been little explored.²⁹ Most recently, and during the preparation of this manuscript, Bhat and co-workers reported thiocyanation of phenols, anilines and indoles using K₂S₂O₈/NH₄SCN in CH₂Cl₂.^{28r} This prompts us to report our study on a direct regioselective C4-thiocyanation of pyrazoles with commercially available and inexpensive potassium thiocyanate (KSCN) in the presence of K₂S₂O₈ under environmentally friendly conditions and with short reaction times.

We began our study by employing 1-methyl-3,5-diphenyl-1*H*-pyrazole (**1a**) as a model substrate to screen for optimum reaction conditions. Various reaction parameters including solvent, thiocyanate source, oxidizing agent, reagent stoichiometry, temperature and reaction time were screened and the results are summarized in Table 1. First, various solvents were evaluated using 1-methyl-3,5-diphenyl-1*H*-pyrazole (**1a**; 0.5 mmol), KSCN (**2a**; 2 equiv) and $K_2S_2O_8$ (1.5 equiv) at room temperature for 24 h (entries 1– 11). It was found that only trace amounts of **3a** were observed when H₂O, 1,4-dioxane, tetrahydrofuran (THF), *N*,*N*dimethylformamide (DMF) and CH₂Cl₂ were employed as the solvents (entries 1–5). Better results were observed when the reactions were performed in EtOH, CH₃OH, EtOAc,

SynOpen

T. Songsichan et al.

7 THIEME

Table 1 Optimization of the Reaction Conditions^a

	Ph	SCN source (2), oxidant solvent, rt, 24 h		Ph SCN	
	1a			3a	
Entry	SCN source (2)	Oxidant	Solvent	1a (%)	3a (%) ^b
1	KSCN (2a)	$K_2S_2O_8$	H ₂ O	98	trace
2	KSCN (2a)	$K_2S_2O_8$	1,4-dioxane	93	trace
3	KSCN (2a)	$K_2S_2O_8$	THF	98	trace
4	KSCN (2a)	$K_2S_2O_8$	DMF	91	1
5	KSCN (2a)	$K_2S_2O_8$	CH_2CI_2	85	2
6	KSCN (2a)	$K_2S_2O_8$	EtOH	66	34
7	KSCN (2a)	$K_2S_2O_8$	CH₃OH	15	75
8	KSCN (2a)	$K_2S_2O_8$	EtOAc	80	17
9	KSCN (2a)	$K_2S_2O_8$	CH ₃ CN	47	47
10	KSCN (2a)	$K_2S_2O_8$	DCE	54	35
11	KSCN (2a)	$K_2S_2O_8$	DMSO	1	96
12	NaSCN (2b)	$K_2S_2O_8$	DMSO	7	91
13	NH ₄ SCN (2c)	$K_2S_2O_8$	DMSO	12	86
14	KSCN (2a)	OXONE [®]	DMSO	31	66
15	KSCN (2a)	$Na_2S_2O_8$	DMSO	2	95
16	KSCN (2a)	DIB	DMSO	85	14
17	KSCN (2a)	IBX	DMSO	90	8
18	KSCN (2a)	TBHP	DMSO	96	trace
19	KSCN (2a)	CAN	DMSO	53	43
20	KSCN (2a)	-	DMSO	98	-
21 ^c	KSCN (2a)	K ₂ S ₂ O ₈	DMSO	0	99
22 ^d	KSCN (2a)	$K_2S_2O_8$	DMSO	5	95
23 ^e	KSCN (2a)	$K_2S_2O_8$	DMSO	19	79

^a Reaction conditions: **1a** (0.5 mmol), **2** (2.0 equiv) and oxidant (1.5 equiv) in solvent (3 mL), open air at room temperature for 24 h.

^b Isolated yield after column chromatography.

^c Reaction conditions: **1a** (0.5 mmol), **2** (1.5 equiv) and oxidant (1.5 equiv) in DMSO (3 mL), open air at 60 °C for 2 h.

^d Reaction conditions: entry 21 and in the presence of TsOH (1 equiv).

^e Reaction conditions: entry 21 and in the presence of K₂CO₃ (1 equiv).

CH₃CN, 1,2-dichloroethane (DCE) and DMSO (entries 6–11), and DMSO provided the highest yield of the desired product **3a** of 96% (entry 11). Under the optimized conditions (entry 11), the source of thiocyanate was next examined and KSCN gave the optimal results (entries 11–13). Among oxidizing agents screened including $K_2S_2O_8$, OXONE[®], Na₂S₂O₈, (diacetoxyiodo)benzene (DIB), 2-iodoxybenzoic acid (IBX), *tert*butyl hydroperoxide (TBHP) and cerium(IV) ammonium nitrate (CAN), $K_2S_2O_8$ was optimum (entries 11, 14–19). Finally, no desired product **3a** was observed when the oxidizing agent was excluded from the reaction (entry 20). After the optimal solvent, thiocyanate source and oxidizing agent were identified, we further optimized the reagent stoichiometry, temperature and reaction time. We were pleased to observe that **3a** was obtained in excellent yield (99% yield) when the reaction was performed in DMSO at 60 °C for 2 h, employing KSCN (1.5 equiv) and $K_2S_2O_8$ (1.5 equiv) (entry 21). Notably, the yield slightly dropped when *p*-toluenesulfonic acid (TsOH, 1 equiv) was added as an additive (entry 22). In contrast, the presence of K_2CO_3 (1 equiv) significantly lowered the yield of **3a** (entry 23). Finally, no improvement was observed when the stoichiometry of KSCN or $K_2S_2O_8$ was increased. After extensive experimentations, the optimum reaction conditions were chosen as: **1** (0.5 mmol; 1.0 equiv), KSCN (1.5 equiv) and $K_2S_2O_8$ (1.5 equiv) in DMSO at 60 °C for 2 h (entry 21).

Paper

With optimized reaction conditions established (Table 1, entry 21), the substrate scope and limitations of the reaction were evaluated; the results are summarized in Scheme 1. A variety of N-substituted-3.5-diphenyl- and N-substituted-3,5-dimethylpyrazoles was first examined. The reactions of N-substituted-3,5-diphenylpyrazoles including Nmethyl-, N-phenyl-, N-allyl-, N-alkyl- and N-(2,2-dimethoxyethyl)-3,5-diphenylpyrazoles proceeded smoothly to yield the corresponding thiocyanated products **3a-f** in moderate to excellent yields (52-99%). N-Benzyl-3,5-dimethylpyrazole (1g) also worked well to provide the corresponding product 3g in 95% yield. On the other hand, the reaction of N-(1-propenyl)-3,5-dimethylpyrazole (1h) proceeded with lower efficiency, yielding 3h in 50% yield. N-Aryl-3,5-dimethylpyrazoles bearing electronically different substituents on the phenyl ring were also investigated. N-Aryl-3,5-dimethylpyrazoles bearing electron-donating groups (4-CH₃ and 4-OCH₃) afforded **3i-k** in high yields (92–97%). The reaction of N-(4-fluorophenyl)-3,5-dimethylpyrazole (11) provided 31 in 98% yield. A low yield was observed when N-(2,4-dinitrophenyl)-3,5-dimethylpyrazole (**1m**) was employed as a substrate. Next, the reactions of 1H-pyrazoles, including symmetrical 3,5-dialkyl-1H-pyrazoles **1n–q**, symmetrical 3,5-diaryl-1*H*-pyrazoles **1r–v** and unsymmetrical 3,5-disubstituted-1*H*-pyrazoles **1w**-**ac**, were also evaluated. Gratifyingly, it was found that the corresponding thiocyanated products **3n-ac** were isolated in good to excellent yields (81-99%). Notably, the N-unprotected-1H-pyrazoles are potentially useful for further synthetic manipulation. 3-Phenyl-1H-pyrazol-5-ol (1ad) and 3-phenyl-1*H*-pyrazol-5-amine (1ae) gave moderate yields of 3ad (53% yield) and 3ae (55% yield). Pyrazole, N-methylpyrazole and N-benzylpyrazole (1af-ah) smoothly underwent the reaction to yield C4-thiocynated products (3af**ah**) in low to moderate yields (13-57%). These results implied that the present thiocyanation reaction took place regioselectively at C4 of the pyrazole core. Moreover, the reactions of bis(3,5-dimethylpyrazol-1-yl)methane (1ai) and 1,3-bis(3,5-dimethylpyrazol-1-yl)propane (1aj) proceeded readily under standard reaction conditions (with the use of KSCN and $K_2S_2O_8$, 3.0 equiv each) to yield the corresponding

SynOpen

T. Songsichan et al.

۸

Paper

products in high yields (89% and 86%, respectively). Finally, the reaction of curcumin-derived pyrazole (**1ak**) provided the thiocyanated product **3ak** in 28% yield.

 $\label{eq:Scheme 1} \begin{array}{l} \mbox{Substrate scope of C4 thiocyanation of pyrazoles. Reaction conditions: 1 (0.5 mmol), KSCN (1.5 equiv) and K_2S_2O_8 (1.5 equiv) in DMSO (3 mL), open air, 60 °C, 2 h. Isolated yield after column chromatography given in parentheses. ^a KSCN (3.0 equiv) and K_2S_2O_8 (3.0 equiv) were used. \\ \end{array}$

To demonstrate the utility of the present reaction further, a scale-up reaction was carried out. Under standard reaction conditions, **1a** (1.17 g, 5 mmol) was efficiently converted into **3a** in 99% yield (Scheme 2). Additionally, further synthetic manipulations of **3a** were also demonstrated (Scheme 3).^{3b,28p,30} The thiocyanate group of **3a** can be transformed into thiocarbamate **4a** in 95% yield. Cycloaddition reaction of **3a** with NaN₃ mediated by ZnCl₂ provided thiotetrazole **5a** in 91% yield. Finally, upon treatment of **3a** with LiAlH₄, the disulfide **6a** was obtained in 71% yield.

To understand the reaction mechanism better, control experiments were carried out (Scheme 4). The yields of **3a** dropped significantly when the reactions of **1a** were carried out in the presence of either 2,6-di-*tert*-butyl-4-meth-ylphenol (BHT) or hydroquinone. In the presence of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), the reaction was totally closed down. Finally, styrene, commonly used as a radical trapping compound, was found to react competitively with reactive species formed in the reaction. Compound **1a** was recovered in 58% yield and **3a** was obtained as an inseparable mixture contaminated with unidentified materials. The observed experimental results imply that the reaction process is likely to involve a radical pathway.

Scheme 4 Control experiments

On the basis of the control experiments and the previous related reports,^{28f,28m} a possible reaction pathway can be proposed (Scheme 5). First, a thiocyanate radical is

generated by the oxidation of KSCN with $K_2S_2O_8$. This thiocyanate radical then reacts with pyrazole **1** to give a radical intermediate **A**, which could be oxidized to carbocationic intermediate **B** by $K_2S_2O_8$. Finally, deprotonation of intermediate **B** takes place to provide the desired product **3**.

In conclusion, we have demonstrated a facile method for thiocyanation of pyrazole derivatives. The reaction was found to be general and pyrazole derivatives bearing a wide variety of substituents are well tolerated. The use of commercially available and inexpensive reagents and the possibility of reaction scale-up make this protocol attractive for future development. Initial efforts to prove the reaction mechanism suggest that the reaction proceeds via radical intermediates.

All isolated compounds were characterized on the basis of ¹H NMR, ¹³C NMR, IR spectroscopic spectra, and HRMS data. ¹H NMR and ¹³C NMR spectra were recorded with a Bruker Ascend[™] spectrometer. ¹H NMR and ¹³C NMR chemical shifts are reported in ppm using tetramethylsilane or the residual non-deuterated solvent peak as an internal standard. Infrared spectra were recorded with a Bruker ALPHA FT-IR spectrometer. High-resolution mass spectra (HRMS) were recorded with a Bruker micro TOF spectrometer in ESI mode. Melting points were recorded with a Sanyo Gallenkamp apparatus. Reactions were monitored by thin-layer chromatography and visualized by UV and KMnO₄ solution. Solvents and some pyrazoles (1af and 1ag) were obtained from commercial sources and used without further purification. Other pyrazoles were synthesized according to reported procedures (see the Supporting Information). Purification of the reaction products was carried out by column chromatography on silica gel (0.063–0.200 mm). After column chromatography, analytically pure solids were obtained by crystallization from CH₂Cl₂-hexanes.

C4 Thiocyanation of Pyrazoles; General Procedure

A 10 mL round-bottom flask was charged with pyrazole **1** (0.5 mmol), KSCN (72.9 mg, 0.75 mmol), $K_2S_2O_8$ (202.7 mg, 0.75 mmol) and DMSO (3 mL). The resulting solution was stirred under air (open flask) at 60 °C for 2 h. After completion of the reaction, the mixture was cooled to r.t. and was diluted with H₂O (10 mL). The mixture was extracted with EtOAc (3 × 10 mL) and the combined organic layers were washed with brine (10 mL), dried over MgSO₄, filtered and concentrated on a rotary evaporator. The residue was purified by column chromatography on silica gel to provide the desired product **3**.

1-Methyl-3,5-diphenyl-4-thiocyanato-1H-pyrazole (3a)

Prepared from 1-methyl-3,5-diphenyl-1*H*-pyrazole (**1a**, 117.1 mg). Purification by column chromatography (20% EtOAc/hexanes) afforded **3a** (99%, 144.4 mg) as a white solid. Mp 137.0–138.0 °C; *R*_f = 0.57 (30% EtOAc/hexanes).

IR (neat): 2154 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.91 (d, *J* = 7.8 Hz, 2 H), 7.62–7.57 (m, 3 H), 7.55–7.44 (m, 5 H), 3.87 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 153.1 (C), 149.2 (C), 131.2 (C), 130.0 (CH), 129.8 (2×CH), 129.0 (2×CH), 128.8 (CH), 128.6 (2×CH), 128.2 (2×CH), 127.5 (C), 111.9 (C), 94.3 (C), 38.2 (CH₃).

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₇H₁₄N₃S: 292.0908; found: 292.0918.

1,3,5-Triphenyl-4-thiocyanato-1*H*-pyrazole (3b)

Prepared from 1,3,5-triphenyl-1*H*-pyrazole (**1b**, 148.2 mg). Purification by column chromatography (10% EtOAc/hexanes) afforded **3b** (63%, 111.6 mg) as a pale-yellow solid.

Mp 130.5–132.0 °C; *R*_f = 0.64 (30% EtOAc/hexanes).

IR (neat): 2161 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.01 (d, J = 7.2 Hz, 2 H), 7.55 (t, J = 7.6 Hz, 2 H), 7.51–7.43 (m, 4 H), 7.40–7.37 (m, 2 H), 7.34–7.30 (m, 5 H).

¹³C NMR (100 MHz, CDCl₃): δ = 154.3 (C), 148.6 (C), 139.2 (C), 131.0 (C), 130.2 (2×CH), 129.9 (CH), 129.2 (CH), 129.1 (2×CH), 128.9 (2×CH), 128.7 (2×CH), 128.5 (2×CH), 128.3 (CH), 127.8 (C), 125.0 (2×CH), 111.8 (C), 96.7 (C).

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₂H₁₅N₃NaS: 376.0884; found: 376.0888.

1-Allyl-3,5-diphenyl-4-thiocyanato-1H-pyrazole (3c)

Prepared from 1-allyl-3,5-diphenyl-1*H*-pyrazole (**1c**, 130.2 mg). Purification by column chromatography (10% EtOAc/hexanes) afforded **3c** (77%, 122.2 mg) as a white solid.

Mp 110.5–112.0 °C; *R*_f = 0.61 (30% EtOAc/hexanes).

IR (neat): 2153 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.94 (d, *J* = 8.3 Hz, 2 H), 7.61–7.44 (m, 8 H), 6.06–5.96 (m, 1 H), 5.25 (dd, *J* = 10.3, 1.0 Hz, 1 H), 5.08 (dd, *J* = 17.1, 1.0 Hz, 1 H), 4.73 (t, *J* = 1.0 Hz, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 153.2 (C), 149.2 (C), 132.3 (CH), 131.1 (C), 130.0 (CH), 129.7 (2×CH), 128.9 (2×CH), 128.7 (CH), 128.5 (2×CH), 128.2 (2×CH), 127.3 (C), 118.3 (CH₂), 111.8 (C), 94.4 (C), 53.0 (CH₂).

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₉H₁₆N₃S: 318.1065; found: 318.1076.

2-(3,5-Diphenyl-4-thiocyanato-1H-pyrazol-1-yl)ethanol (3d)

Prepared from 2-(3,5-diphenyl-1*H*-pyrazol-1-yl)ethanol (**1d**, 132.2 mg). Purification by column chromatography (40% EtOAc/hexanes) afforded **3d** (92%, 148.2 mg) as a white solid.

Mp 130.0–132.0 °C; *R*_f = 0.40 (40% EtOAc/hexanes).

-

10

THIEME

nOpen	T. Songsichan et al.

Paper

IR (neat): 3498 (O−H), 2158 (C≡N) cm⁻¹.

Sv

¹H NMR (400 MHz, CDCl₃): δ = 7.90 (d, *J* = 8.4 Hz, 2 H), 7.60–7.54 (m, 3 H), 7.53–7.44 (m, 5 H), 4.15 (t, *J* = 5.2 Hz, 2 H), 3.98 (t, *J* = 5.2 Hz, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 153.3 (C), 149.9 (C), 130.8 (C), 130.04 (CH), 129.95 (2×CH), 128.9 (3×CH), 128.5 (2×CH), 128.1 (2×CH), 127.0 (C), 111.8 (C), 94.5 (C), 61.0 (CH₂), 51.9 (CH₂).

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₈H₁₅N₃NaOS: 344.0834; found: 344.0835.

2-(2-(3,5-Diphenyl-4-thiocyanato-1*H*-pyrazol-1-yl)ethoxy)ethanol (3e)

Prepared from 2-(2-(3,5-diphenyl-1*H*-pyrazol-1-yl)ethoxy)ethanol (**1e**, 154.2 mg). Purification by column chromatography (60% EtOAc/hexanes) afforded **3e** (83%, 150.8 mg) as a pale-yellow solid.

Mp 63.0–64.5 °C; R_f = 0.43 (60% EtOAc/hexanes).

IR (neat): 3400 (O−H), 2155 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.90 (d, *J* = 7.0 Hz, 2 H), 7.61–7.43 (m, 8 H), 4.27 (t, *J* = 5.3 Hz, 2 H), 3.88 (t, *J* = 5.3 Hz, 2 H), 3.62 (t, *J* = 4.8 Hz, 2 H), 3.47 (t, *J* = 4.8 Hz, 2 H), 2.53 (br s, 1 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 153.4 (C), 150.1 (C), 131.0 (C), 130.0 (3×CH), 128.94 (2×CH), 128.89 (CH), 128.6 (2×CH), 128.2 (2×CH), 127.4 (C), 111.9 (C), 94.6 (C), 72.2 (CH₂), 69.0 (CH₂), 61.4 (CH₂), 50.1 (CH₂).

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₀H₁₉N₃NaO₂S: 388.1096; found: 388.1104.

1-(2,2-Dimethoxyethyl)-3,5-diphenyl-4-thiocyanato-1*H*-pyrazole (3f)

Prepared from 1-(2,2-dimethoxyethyl)-3,5-diphenyl-1*H*-pyrazole (**1f**, 154.2 mg). Purification by column chromatography (20% EtOAc/ hexanes) afforded **3f** (52%, 94.5 mg) as a white solid.

Mp 75.0–76.5 °C; *R*_f = 0.57 (20% EtOAc/hexanes).

IR (neat): 2152 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.92 (d, *J* = 8.5 Hz, 2 H), 7.61–7.44 (m, 8 H), 4.91 (t, *J* = 5.6 Hz, 1 H), 4.18 (d, *J* = 5.6 Hz, 2 H), 3.32 (s, 6 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 153.5 (C), 150.4 (C), 131.2 (C), 130.3 (2×CH), 130.0 (CH), 129.1 (3×CH), 128.6 (2×CH), 128.3 (2×CH), 127.3 (C), 112.0 (C), 103.1 (CH), 94.6 (C), 55.1 (2×CH₃), 51.9 (CH₂).

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₀H₁₉N₃NaO₂S: 388.1096; found: 388.1094.

1-Benzyl-3,5-dimethyl-4-thiocyanato-1H-pyrazole (3g)

Prepared from 1-benzyl-3,5-dimethyl-1*H*-pyrazole (**1g**, 93.1 mg). Purification by column chromatography (100% CH_2Cl_2) afforded **3g** (95%, 115.0 mg) as a white solid.

Mp 82.5–83.5 °C; $R_f = 0.50 (100\% \text{ CH}_2\text{Cl}_2)$.

IR (neat): 2155 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.34–7.25 (m, 3 H), 7.10 (d, *J* = 6.6 Hz, 2 H), 5.22 (s, 2 H), 2.36 (s, 3 H), 2.29 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 150.8 (C), 143.8 (C), 135.4 (C), 128.7 (2×CH), 127.8 (CH), 126.7 (2×CH), 110.9 (C), 94.9 (C), 53.7 (CH₂), 11.8 (CH₃), 10.0 (CH₃).

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₃H₁₃N₃NaS: 266.0728; found: 266.0729.

3,5-Dimethyl-1-(prop-1-en-1-yl)-4-thiocyanato-1*H*-pyrazole (3h)

Prepared from 3,5-dimethyl-1-(prop-1-en-1-yl)-1*H*-pyrazole (**1h**, 68.1 mg). Purification by column chromatography (30% EtOAc/ hexanes) afforded **3h** (50%, 47.9 mg) as a yellow solid.

Mp 56.0–58.0 °C; *R*_f = 0.48 (20% EtOAc/hexanes).

IR (neat): 2151 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 6.66 (dd, J = 13.7, 1.7 Hz, 1 H), 6.27 (dq, J = 13.7, 6.9 Hz, 1 H), 2.39 (s, 3 H), 2.35 (s, 3 H), 1.83 (dd, J = 6.9, 1.6 Hz, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 151.8 (C), 142.6 (C), 124.0 (CH), 117.3 (CH), 110.8 (C), 95.5 (C), 15.0 (CH₃), 11.9 (CH₃), 10.1 (CH₃).

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₉H₁₂N₃S: 194.0752; found: 194.0752.

3,5-Dimethyl-1-phenyl-4-thiocyanato-1H-pyrazole (3i)

Prepared from 3,5-dimethyl-1-phenyl-1*H*-pyrazole (**1i**, 86.1 mg). Purification by column chromatography (100% CH_2Cl_2) afforded **3i** (92%, 106.0 mg) as white crystals.

Mp 89.0–90.0 °C; $R_f = 0.62 (100\% \text{ CH}_2\text{Cl}_2)$.

IR (neat): 2151 (C≡N) cm⁻¹.

 ^{1}H NMR (400 MHz, CDCl_3): δ = 7.51–7.39 (m, 5 H), 2.43 (s, 3 H), 2.42 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 152.0 (C), 144.3 (C), 139.1 (C), 129.4 (2×CH), 128.6 (CH), 125.0 (2×CH), 110.8 (C), 96.6 (C), 12.0 (CH₃), 11.5 (CH₃).

HRMS (ESI-TOF): $m/z \ [M + H]^+$ calcd for $C_{12}H_{12}N_3S$: 230.0752; found: 230.0766.

3,5-Dimethyl-4-thiocyanato-1-(p-tolyl)-1H-pyrazole (3j)

Prepared from 3,5-dimethyl-1-(*p*-tolyl)-1*H*-pyrazole (**1***j*, 93.1 mg). Purification by column chromatography (10% EtOAc/hexanes) afforded **3***j* (97%, 118.5 mg) as colorless crystals.

Mp 85.5–88.0 °C; *R*_f = 0.66 (30% EtOAc/hexanes).

IR (neat): 2151 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.18 (s, 4 H), 2.32 (s, 3 H), 2.31 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃): δ = 151.5 (C), 144.0 (C), 138.4 (C), 136.3 (C), 129.6 (2×CH), 124.5 (2×CH), 110.7 (C), 95.9 (C), 20.9 (CH₃), 11.8 (CH₃), 11.2 (CH₃).

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₃H₁₄N₃S: 244.0908; found: 244.0908.

1-(4-Methoxyphenyl)-3,5-dimethyl-4-thiocyanato-1*H*-pyrazole (3k)

Prepared from 1-(4-methoxyphenyl)-3,5-dimethyl-1*H*-pyrazole (**1k**, 101.1 mg). Purification by column chromatography (20% EtOAc/ hexanes) afforded **3k** (95%, 123.5 mg) as colorless needles.

Mp 89.0–91.0 °C; R_f = 0.34 (20% EtOAc/hexanes).

IR (neat): 2149 (C≡N) cm⁻¹.

¹H NMR (400 MHz, $CDCl_3$): δ = 7.21 (d, J = 8.9 Hz, 2 H), 6.89 (d, J = 9.0 Hz, 2 H), 3.74 (s, 3 H), 2.32 (s, 3 H), 2.28 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 159.4 (C), 151.3 (C), 144.2 (C), 131.8 (C), 126.2 (2×CH), 114.2 (2×CH), 110.7 (C), 95.6 (C), 55.3 (CH₃), 11.7 (CH₃), 11.1 (CH₃).

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₃H₁₄N₃OS: 260.0858; found: 260.0860.

T. Songsichan et al.

THIEME OPEN ACCESS

1-(4-Fluorophenyl)-3,5-dimethyl-4-thiocyanato-1*H*-pyrazole (31)

Prepared from 1-(4-fluorophenyl)-3,5-dimethyl-1*H*-pyrazole (**1**, 95.1 mg). Purification by column chromatography (30% EtOAc/hexanes) afforded **3**I (98%, 120.9 mg) as a pale-yellow solid.

Mp 77.0–79.0 °C; *R*_f = 0.37 (20% EtOAc/hexanes).

IR (neat): 2156 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.38–7.33 (m, 2 H), 7.18–7.12 (m, 2 H), 2.378 (s, 3 H), 2.375 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 162.1 (d, J = 247.7 Hz, C), 151.8 (C), 144.2 (C), 135.0 (C), 126.8 (d, J = 8.8 Hz, 2×CH), 116.1 (d, J = 23.0 Hz, 2×CH), 110.5 (d, J = 6.7 Hz, C), 96.6 (C), 11.8 (CH₃), 11.2 (CH₃).

¹⁹F NMR (376 MHz, CDCl₃): δ = -112.03.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₂H₁₁FN₃S: 248.0658; found: 248.0658.

1-(2,4-Dinitrophenyl)-3,5-dimethyl-4-thiocyanato-1*H*-pyrazole (3m)

Prepared from 1-(2,4-dinitrophenyl)-3,5-dimethyl-1*H*-pyrazole (**1m**, 131.1 mg). Purification by column chromatography (10% EtOAc/ hexanes) afforded **3m** (33%, 51.5 mg) as a pale-yellow solid.

Mp 79.0–81.5 °C; *R*_f = 0.41 (30% EtOAc/hexanes).

IR (neat): 2160 (C≡N), 1535 and 1349 (N–O) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.88 (d, J = 2.5 Hz, 1 H), 8.63 (dd, J = 8.7, 2.5 Hz, 1 H), 7.77 (d, J = 8.7 Hz, 1 H), 2.41 (s, 3 H), 2.40 (s, 3 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 154.3 (C), 147.4 (C), 146.0 (C), 145.7 (C), 136.8 (C), 130.1 (CH), 127.9 (CH), 121.2 (CH), 109.9 (C), 99.4 (C), 12.0 (CH₃), 10.9 (CH₃).

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₂H₉N₅NaO₄S: 342.0273; found: 342.0268.

3,5-Dimethyl-4-thiocyanato-1*H*-pyrazole (3n)

Prepared from 3,5-dimethyl-1*H*-pyrazole (**1n**, 48.1 mg). Purification by column chromatography (20% EtOAc/CH₂Cl₂) afforded **3n** (87%, 66.3 mg) as a white solid

Mp 57.0–59.0 °C; $R_f = 0.43$ (30% EtOAc/CH₂Cl₂).

IR (neat): 3272 (N−H), 2163 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 9.33 (br s, 1 H), 2.40 (s, 6 H).

¹³C NMR (100 MHz, CDCl₃): δ = 148.5 (2×C), 110.8 (C), 94.9 (C), 11.0 (2×CH₃).

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₆H₇N₃NaS: 176.0258; found: 176.0251.

3,5-Diethyl-4-thiocyanato-1*H*-pyrazole (30)

Prepared from 3,5-diethyl-1*H*-pyrazole (**10**, 62.1 mg). Purification by column chromatography (20% EtOAc/ CH_2Cl_2) afforded **30** (93%, 84.0 mg) as a colorless oil.

 $R_f = 0.43 (30\% \text{ EtOAc/CH}_2 \text{Cl}_2).$

IR (neat): 3174 (N−H), 2156 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 10.82 (br s, 1 H), 2.75 (q, *J* = 7.6 Hz, 4 H), 1.26 (t, *J* = 7.6 Hz, 6 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 153.7 (2×C), 111.3 (C), 92.8 (C), 19.0 (2×CH₂), 12.8 (CH₃), 12.6 (CH₃).

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₈H₁₂N₃S: 182.0752; found: 182.0761.

3,5-Diisopropyl-4-thiocyanato-1*H*-pyrazole (3p)

Prepared from 3,5-diisopropyl-1*H*-pyrazole (**1p**, 76.1 mg). Purification by column chromatography (5% EtOAc/CH₂Cl₂) afforded **3p** (97%, 101.0 mg) as a colorless oil.

 $R_f = 0.47 (30\% \text{ EtOAc/CH}_2\text{Cl}_2).$

IR (neat): 3178 (N−H), 2156 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 9.41 (br s, 1 H), 3.27 (sept, *J* = 7.0 Hz, 2 H), 1.34 (d, *J* = 7.0 Hz, 12 H).

¹³C NMR (100 MHz, CDCl₃): δ = 157.6 (2×C), 111.6 (C), 91.2 (C), 26.0 (2×CH), 21.6 (4×CH₃).

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₀H₁₆N₃S: 210.1065; found: 210.1073.

3,5-Di-tert-butyl-4-thiocyanato-1H-pyrazole (3q)

Prepared from 3,5-di-*tert*-butyl-1*H*-pyrazole (**1q**, 90.1 mg). Purification by column chromatography (5% EtOAc/CH₂Cl₂) afforded **3q** (89%, 105.4 mg) as a colorless solid.

Mp 155.5–157.5 °C; $R_f = 0.61$ (30% EtOAc/CH₂Cl₂).

IR (neat): 3259 (N−H), 2150 (C≡N) cm⁻¹.

¹H NMR (400 MHz, $CDCl_3$): δ = 10.11 (br s, 1 H), 1.51 (s, 18 H).

¹³C NMR (100 MHz, CDCl₃): δ = 160.3 (2×C), 112.7 (C), 90.6 (C), 33.0 (2×C), 29.3 (6×CH₃).

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₂H₂₀N₃S: 238.1378; found: 238.1385.

3,5-Diphenyl-4-thiocyanato-1*H*-pyrazole (3r)

Prepared from 3,5-diphenyl-1*H*-pyrazole (**1r**, 110.1 mg). Purification by column chromatography (10% EtOAc/CH₂Cl₂) afforded **3r** (99%, 137.5 mg) as a white solid.

Mp 171.5–174.5 °C; $R_f = 0.39 (30\% \text{ EtOAc/CH}_2\text{Cl}_2)$.

IR (neat): 3185 (N−H), 2157 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 9.04 (br s, 1 H), 7.64 (dd, *J* = 7.6, 1.6 Hz, 4 H), 7.48–7.40 (m, 6 H).

¹³C NMR (100 MHz, CDCl₃): δ = 152.1 (2×C), 129.7 (2×CH), 128.9 (4×CH), 128.7 (2×C), 128.3 (4×CH), 111.7 (C), 93.4 (C).

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₆H₁₂N₃S: 278.0752; found: 278.0757.

4-Thiocyanato-3,5-di-p-tolyl-1*H*-pyrazole (3s)

Prepared from 3,5-di-*p*-tolyl-1*H*-pyrazole (**1s**, 124.2 mg). Purification by column chromatography (10% EtOAc/CH₂Cl₂) afforded **3s** (99%, 150.5 mg) as a white solid.

Mp 186.5–188.5 °C; $R_f = 0.58 (30\% \text{ EtOAc/CH}_2\text{Cl}_2)$.

IR (neat): 3185 (N–H), 2157 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.99 (br s, 1 H), 7.56 (d, J = 8.1 Hz, 4 H), 7.23 (d, J = 7.9 Hz, 4 H), 2.41 (s, 6 H).

¹³C NMR (100 MHz, CDCl₃): δ = 152.1 (2×C), 139.7 (2×C), 129.6 (4×CH), 128.1 (4×CH), 125.8 (2×C), 111.9 (C), 92.8 (C), 21.4 (2×CH₃).

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₈H₁₆N₃S: 306.1065; found: 306.1060.

3,5-Bis(4-methoxyphenyl)-4-thiocyanato-1*H*-pyrazole (3t)

Prepared from 3,5-bis(4-methoxyphenyl)-1*H*-pyrazole (**1t**, 140.2 mg). Purification by column chromatography (10% EtOAc/CH₂Cl₂) afforded **3t** (90%, 152.6 mg) as a white solid.

12

THIEME

T. Songsichan et al.

Mp 188.0–189.0 °C; *R*_f = 0.43 (60% EtOAc/CH₂Cl₂).

IR (neat): 3187 (N-H), 2155 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.57 (d, *J* = 8.7 Hz, 4 H), 6.89 (d, *J* = 8.7 Hz, 4 H), 3.84 (s, 6 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 160.5 (2×C), 151.8 (2×C), 129.6 (4×CH), 121.1 (2×C), 114.3 (4×CH), 112.1 (C), 92.2 (C), 55.3 (2×CH₃).

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₈H₁₆N₃O₂S: 338.0963; found: 338.0962.

3,5-Bis(2-methoxyphenyl)-4-thiocyanato-1H-pyrazole (3u)

Prepared from 3,5-bis(2-methoxyphenyl)-1*H*-pyrazole (**1u**, 140.2 mg). Purification by column chromatography (10% EtOAc/CH₂Cl₂) afforded **3u** (84%, 142.5 mg) as a pale-yellow solid.

Mp 132.5–134.0 °C; $R_f = 0.43$ (60% EtOAc/CH₂Cl₂).

IR (neat): 3154 (N−H), 2154 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.59 (br s, 1 H), 7.73 (dd, J = 7.6, 1.6 Hz, 2 H), 7.44 (td, J = 7.6, 1.6 Hz, 2 H), 7.09 (td, J = 7.6, 0.7 Hz, 2 H), 7.02 (d, J = 8.3 Hz, 2 H), 3.83 (s, 6 H).

¹³C NMR (100 MHz, CDCl₃): δ = 156.9 (2×C), 148.1 (2×C), 130.9 (2×CH), 130.7 (2×CH), 120.8 (2×CH), 118.0 (2×C), 111.9 (C), 111.1 (2×CH), 95.7 (C), 55.4 (2×CH₃).

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₈H₁₅N₃NaO₂S: 360.0783; found: 360.0782.

3,5-Bis(2-(benzyloxy)phenyl)-4-thiocyanato-1H-pyrazole (3v)

Prepared from 3,5-bis(2-(benzyloxy)phenyl)-1*H*-pyrazole (**1v**, 216.3 mg). Purification by column chromatography (5% EtOAc/ CH_2Cl_2) afforded **3v** (99%, 242.2 mg) as a pale-yellow solid.

Mp 104.5–106.5 °C; $R_f = 0.39 (30\% \text{ EtOAc/CH}_2\text{Cl}_2)$.

IR (neat): 3187 (N–H), 2153 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 11.00 (br s, 1 H), 7.73 (d, *J* = 7.5 Hz, 2 H), 7.44–7.29 (m, 12 H), 7.13–7.06 (m, 4 H), 5.11 (s, 4 H).

¹³C NMR (100 MHz, CDCl₃): δ = 155.8 (2×C), 147.6 (2×C), 136.2 (2×C), 130.7 (2×CH), 130.6 (2×CH), 128.3 (4×CH), 127.7 (2×CH), 126.8 (4×CH), 121.1 (2×CH), 118.4 (2×C), 113.0 (2×CH), 111.7 (C), 96.0 (C), 70.4 (2×CH).

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for $C_{30}H_{24}N_3O_2S$: 490.1589; found: 490.1597.

5-Phenyl-4-thiocyanato-3-(m-tolyl)-1H-pyrazole (3w)

Prepared from 5-phenyl-3-(m-tolyl)-1H-pyrazole (1w, 117.2 mg). Purification by column chromatography (5% EtOAc/CH₂Cl₂) afforded 3w (99%, 144.2 mg) as a white solid.

Mp 167.0–169.0 °C; $R_f = 0.51 (5\% \text{ EtOAc/CH}_2\text{Cl}_2)$.

IR (neat): 3206 (N–H), 2153 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 11.29 (br s, 1 H), 7.56 (d, *J* = 8.3 Hz, 2 H), 7.42–7.32 (m, 5 H), 7.26–7.19 (m, 2 H), 2.26 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 152.1 (C), 151.9 (C), 138.6 (C), 130.4 (CH), 129.5 (CH), 128.8 (2×CH), 128.73 (CH), 128.69 (CH), 128.3 (2×C), 128.1 (2×CH), 125.3 (CH), 111.8 (C), 93.0 (C), 21.3 (CH₃).

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₇H₁₄N₃S: 292.0908; found: 292.0904.

3-(3-Methoxyphenyl)-5-phenyl-4-thiocyanato-1*H*-pyrazole (3x)

Prepared from 3-(3-methoxyphenyl)-5-phenyl-1*H*-pyrazole (**1x**, 125.2 mg). Purification by column chromatography (40% EtOAc/ hexanes) afforded **3x** (96%, 148.0 mg) as a pale-yellow solid.

Mp 92.5–94.0 °C; R_f = 0.55 (40% EtOAc/hexanes).

IR (neat): 2155 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 11.14 (br s, 1 H), 7.54 (d, *J* = 7.0 Hz, 2 H), 7.41–7.31 (m, 3 H), 7.23 (t, *J* = 8.1 Hz, 1 H), 7.13 (d, *J* = 6.7 Hz, 2 H), 6.92 (dd, *J* = 8.5, 1.6 Hz, 1 H), 3.69 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 159.6 (C), 151.9 (2×C), 129.9 (CH), 129.7 (C), 129.6 (CH), 128.8 (2×CH), 128.4 (C), 128.1 (2×CH), 120.3 (CH), 115.6 (CH), 113.2 (CH), 111.8 (C), 93.1 (C), 55.1 (CH₃).

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₇H₁₃N₃NaOS: 330.0677; found: 330.0675.

3-(3-Chlorophenyl)-5-phenyl-4-thiocyanato-1H-pyrazole (3y)

Prepared from 3-(3-chlorophenyl)-5-phenyl-1*H*-pyrazole (**1y**, 127.4 mg). Purification by column chromatography (40% EtOAc/hexanes) afforded **3y** (81%, 126.0 mg) as a white solid.

Mp 139.0–141.0 °C; $R_f = 0.64$ (40% EtOAc/hexanes).

IR (neat): 2155 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 11.81 (br s, 1 H), 7.57–7.54 (m, 3 H), 7.51–7.43 (m, 2 H), 7.42–7.36 (m, 3 H), 7.30 (t, *J* = 7.6 Hz, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 151.7 (C), 151.1 (C), 134.7 (C), 130.7 (C), 130.05 (CH), 129.8 (CH), 129.6 (CH), 129.0 (2×CH), 128.1 (CH), 128.0 (2×CH), 127.5 (C), 126.3 (CH), 111.3 (C), 93.6 (C).

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₆H₁₀ClN₃NaS: 334.0182; found: 334.0182.

3-Cyclohexyl-5-phenyl-4-thiocyanato-1*H*-pyrazole (3z)

Prepared from 3-cyclohexyl-5-phenyl-1*H*-pyrazole (**1z**, 113.2 mg). Purification by column chromatography (40% EtOAc/hexanes) afforded **3z** (99%, 139.6 mg) as a pale-yellow solid.

Mp 87.0–89.0 °C; *R*_f = 0.66 (40% EtOAc/hexanes).

IR (neat): 3158 (N−H), 2155 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 10.63 (br s, 1 H), 7.65 (dd, *J* = 7.6, 2.0 Hz, 2 H), 7.44–7.38 (m, 3 H), 2.96–2.90 (m, 1 H), 1.90 (d, *J* = 10.7 Hz, 2 H), 1.79–1.71 (m, 3 H), 1.48–1.28 (m, 4 H), 1.18–1.10 (m, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 156.8 (C), 152.0 (C), 129.6 (C), 129.2 (CH), 128.6 (2×CH), 128.1 (2×CH), 111.6 (C), 92.2 (C), 35.6 (CH), 31.7 (2×CH₂), 26.1 (2×CH₂), 25.5 (CH₂).

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₆H₁₈N₃NaS: 306.1041; found: 306.1053.

5-Hexyl-3-phenyl-4-thiocyanato-1H-pyrazole (3aa)

Prepared from 5-hexyl-3-phenyl-1*H*-pyrazole (**1aa**, 114.2 mg). Purification by column chromatography (5% EtOAc/CH₂Cl₂) afforded **3aa** (94%, 134.2 mg) as a colorless oil.

 $R_f = 0.68 (5\% \text{ EtOAc/CH}_2\text{Cl}_2).$

IR (neat): 3165 (N−H), 2156 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 11.70 (br s, 1 H), 7.69–7.67 (m, 2 H), 7.45–7.44 (m, 3 H), 2.62 (t, J = 7.7 Hz, 2 H), 1.58–1.53 (m, 2 H), 1.30–1.21 (m, 6 H), 0.88 (t, J = 6.5 Hz, 3 H).

SynOpen	T. Songsichan et al.	OPEN ACCESS	

¹³C NMR (100 MHz, CDCl₃): δ = 152.8 (C), 151.9 (C), 129.6 (C), 129.3 (CH), 128.7 (2×CH), 128.0 (2×CH), 111.3 (C), 93.3 (C), 31.2 (CH₂), 28.8 (CH₂), 28.4 (CH₂), 25.2 (CH₂), 22.3 (CH₂), 13.9 (CH₃).

HRMS (ESI-TOF): $m/z \ [M$ + $Na]^{+}$ calcd for $C_{16}H_{19}N_{3}NaS$: 308.1197; found: 308.1199.

5-Benzyl-3-phenyl-4-thiocyanato-1H-pyrazole (3ab)

Prepared from 5-benzyl-3-phenyl-1*H*-pyrazole (**1ab**, 117.2 mg). Purification by column chromatography (40% EtOAc/hexanes) afforded **3ab** (88%, 127.8 mg) as a yellow solid.

Mp 121.5–122.5 °C; *R*_f = 0.56 (40% EtOAc/hexanes).

IR (neat): 3211 (N−H), 2154 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 10.90 (br s, 1 H), 7.56 (dd, *J* = 7.4, 1.3 Hz, 2 H), 7.41–7.33 (m, 3 H), 7.21–7.13 (m, 3 H), 7.08 (d, *J* = 7.8 Hz, 2 H), 3.95 (s, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ = 152.3 (C), 150.7 (C), 136.3 (C), 129.5 (CH), 128.8 (2×CH), 128.7 (C), 128.6 (2×CH), 128.5 (2×CH), 127.9 (2×CH), 126.9 (CH), 110.9 (C), 93.7 (C), 31.6 (CH₂).

HRMS (ESI-TOF): m/z [M + Na]⁺calcd for C₁₇H₁₃N₃NaS: 314.0728; found: 314.0732.

5-((Benzyloxy)methyl)-3-phenyl-4-thiocyanato-1H-pyrazole (3ac)

Prepared from 5-((benzyloxy)methyl)-3-phenyl-1*H*-pyrazole (**1ac**, 132.2 mg). Purification by column chromatography (40% EtOAc/ hexanes) afforded **3ac** (86%, 137.6 mg) as a pale-yellow solid.

Mp 146.5–150.0 °C; $R_f = 0.52$ (40% EtOAc/hexanes).

IR (neat): 3156 (N–H), 2155 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 10.72 (br s, 1 H), 7.68–7.65 (m, 2 H), 7.47–7.43 (m, 3 H), 7.34–7.30 (m, 5 H), 4.66 (s, 2 H), 4.58 (s, 2 H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 150.2 (C), 149.9 (C), 136.8 (C), 133.2 (C), 129.5 (CH), 128.8 (2×CH), 128.3 (2×CH), 127.9 (CH), 127.86 (2×CH), 127.82 (2×CH), 110.9 (C), 93.8 (C), 73.0 (CH₂), 62.5 (CH₂).

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₈H₁₅N₃NaOS: 344.0834; found: 344.0831.

3-Phenyl-4-thiocyanato-1H-pyrazol-5-ol (3ad)

Prepared from 3-phenyl-1*H*-pyrazol-5-ol (**1ad**, 80.1 mg). Purification by column chromatography (10% MeOH/CH₂Cl₂) afforded **3ad** (53%, 57.2 mg) as a green solid.

Mp 170.0 °C (decomp.); $R_f = 0.46 (20\% \text{ MeOH/CH}_2\text{Cl}_2)$.

IR (neat): 3290 (O−H), 2157 (C≡N) cm⁻¹.

¹H NMR (500 MHz, CD₃OD): δ = 7.65–7.64 (m, 2 H), 7.42 (t, *J* = 7.3 Hz, 2 H), 7.36 (d, *J* = 7.4 Hz, 1 H).

¹³C NMR (125 MHz, CD₃OD): δ = 161.8 (C), 145.7 (C), 130.3 (C), 128.5 (2×CH), 128.4 (C), 128.1 (2×CH), 125.0 (CH), 86.9 (C).

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₀H₇N₃NaOS: 240.0208; found: 240.0214.

3-Phenyl-4-thiocyanato-1H-pyrazol-5-amine (3ae)

Prepared from 3-phenyl-1*H*-pyrazol-5-amine (**1ae**, 79.6 mg). Purification by column chromatography (5.0% EtOAc/hexanes) afforded **3ae** (55%, 59.0 mg) as a pale-yellow solid.

Mp 94.5–96.0 °C; R_f = 0.52 (100% EtOAc).

IR (neat): 3275 (N−H), 2152 (C≡N) cm⁻¹.

 ^1H NMR (500 MHz, CD_30D): δ = 7.65–7.63 (m, 2 H), 7.40–7.37 (m, 2 H), 7.32–7.29 (m, 1 H).

 ^{13}C NMR (125 MHz, CD₃OD): δ = 153.8 (C), 146.4 (C), 131.0 (C), 128.4 (2×CH), 127.8 (2×CH), 126.8 (C), 125.2 (CH), 88.8 (C).

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₀H₉N₄S: 217.0548; found: 217.0548.

4-Thiocyanato-1H-pyrazole (3af)

13

Prepared from pyrazole (**1af**, 34.0 mg). Purification by column chromatography (30% EtOAc/hexanes) afforded **3af** (13%, 7.9 mg) as a white solid.

Mp 165.5–167.0 °C; $R_f = 0.47$ (50% EtOAc/hexanes).

IR (neat): 3211 (N−H), 2154 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.87 (s, 2 H), 6.52 (br s, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 138.5 (2×CH), 111.2 (C), 98.1 (C).

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₄H₃N₃NaS: 147.9945; found: 147.9935.

1-Methyl-4-thiocyanato-1H-pyrazole (3ag)

Prepared from 1-methyl-1*H*-pyrazole (**1ag**, 41.0 mg). Product **3ag** (57%, 42.6 mg) was afforded as a colorless liquid.

IR (neat): 2156 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.71 (s, 1 H), 7.68 (s, 1 H), 3.94 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ = 143.2 (CH), 134.9 (CH), 111.2 (C), 97.0 (C), 39.5 (CH₃).

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₅H₅N₃NaS: 162.0102; found: 162.0107.

1-Benzyl-4-thiocyanato-1*H*-pyrazole (3ah)

Prepared from 1-benzyl-1*H*-pyrazole (**1ah**, 79.1 mg). Purification by column chromatography (5% acetone/hexanes) afforded **3ah** (30%, 29.6 mg) as a colorless oil.

 $R_f = 0.40 (30\% \text{ acetone/hexane}).$

IR (neat): 2156 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.72 (s, 1 H), 7.64 (s, 1 H), 7.41–7.36 (m, 3 H), 7.27–7.24 (m, 2 H), 5.30 (s, 1 H).

¹³C NMR (100 MHz, CDCl₃): δ = 143.4 (CH), 134.7 (C), 134.1 (CH), 129.1 (2×CH), 128.7 (CH), 128.1 (2×CH), 111.2 (C), 97.6 (C), 56.9 (CH₂). HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₁H₉N₃NaS: 238.0415; found: 248.0414.

Bis(3,5-dimethyl-4-thiocyanato-1H-pyrazol-1-yl)methane (3ai)

Prepared from bis(3,5-dimethyl-1*H*-pyrazol-1-yl)methane (**1ai**, 102.1 mg). Purification by column chromatography (40% EtOAc/hexanes) afforded **3ai** (89%, 141.1 mg) as colorless crystals.

Mp 87.5–89.5 °C; *R*_f = 0.53 (40% EtOAc/hexanes).

IR (neat): 2154 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 6.05 (s, 2 H), 2.59 (s, 6 H), 2.28 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃): δ = 151.9 (2×C), 145.5 (2×C), 110.3 (2×C), 96.6 (2×C), 60.9 (CH₂), 11.8 (2×CH₃), 10.2 (2×CH₃).

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₃H₁₄N₆NaS₂: 341.0619; found: 341.0624.

Svn	O I	ne	n

T. Songsichan et al.

14

1,3-Bis(3,5-dimethyl-4-thiocyanato-1H-pyrazol-1-yl)propane (3aj) Prepared from 1,3-bis(3,5-dimethyl-1H-pyrazol-1-yl)propane (**1aj**, 116.2 mg). Purification by column chromatography (40% EtOAc/ hexanes) afforded **3aj** (86%, 148.3 mg) as a white solid.

Mp 71.0–73.0 °C; $R_f = 0.50$ (100% EtOAc).

IR (neat): 2157 (C≡N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 3.95 (t, J = 6.7 Hz, 4 H), 2.31 (quin, J = 6.7 Hz, 2 H), 2.254 (s, 6 H), 2.249 (s, 6 H).

¹³C NMR (100 MHz, CDCl₃): δ = 150.8 (2×C), 143.6 (2×C), 110.7 (2×C), 94.3 (2×C), 46.1 (2×CH₂), 28.6 (CH₂), 11.6 (2×CH₃), 9.7 (2×CH₃).

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₅H₁₈N₆NaS₂: 369.0932; found: 369.0933.

4,4'-(1E,1'E-(4-Thiocyanato-1H-pyrazole-3,5-diyl)bis(ethene-2,1-diyl))bis(2-methoxyphenol) (3ak)

Prepared from 4,4'-((1*E*,1'*E*)-(1*H*-pyrazole-3,5-diyl)bis(ethene-2,1-diyl))bis(2-methoxyphenol) (**1ak**, 182.2 mg). Purification by column chromatography (4% MeOH/CH₂Cl₂) afforded **3ak** (28%, 51.6 mg) as a yellow solid.

Mp 197.0–198.0 °C; *R*_f = 0.30 (10% MeOH/CH₂Cl₂).

IR (neat): 3239 (O–H), 2158 (C≡N) cm⁻¹.

¹H NMR (400 MHz, acetone- d_6): δ = 7.87 (s, 1 H), 7.38 (d, *J* = 16.6 Hz, 2 H), 7.19 (d, *J* = 1.7 Hz, 2 H), 7.02 (s, 1 H), 6.70–6.97 (m, 3 H), 6.75 (d, *J* = 8.2 Hz, 2 H), 3.80 (s, 6 H).

¹³C NMR (100 MHz, acetone- d_6): δ = 147.9 (2×C), 147.8 (2×C), 133.3 (2×C), 128.5 (C), 121.1 (2×CH), 114.9 (4×CH), 112.0 (C), 110.8 (C), 109.5 (4×CH), 92.5 (C), 55.4 (2×CH₃).

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for $C_{22}H_{20}N_3O_4S$: 422.1175; found: 422.1165.

Synthesis of S-(1-Methyl-3,5-diphenyl-1H-pyrazol-4-yl)carbamothioate (4a)^{5a}

A solution of 1-methyl-3,5-diphenyl-4-thiocyanato-1*H*-pyrazole (**3a**, 145.7 mg, 0.5 mmol) in CH₂Cl₂ (2 mL) was added to concentrated sulfuric acid (0.8 mL). The resulting solution was stirred at 0 °C for 5 h. The reaction mixture was allowed to warm to r.t. and diluted with H₂O (10 mL). The mixture was extracted with CH₂Cl₂ (3 × 10 mL) and the combined organic layers were washed with brine (10 mL), dried over MgSO₄, filtered, and concentrated on a rotary evaporator.

Product 4a (95%, 146.7 mg) was obtained as a pale-yellow solid.

Mp 178.0–179.0 °C; R_f = 0.39 (30% EtOAc/hexanes).

IR (neat): 3454 (N–H), 1656 (C=O) cm⁻¹.

¹H NMR (400 MHz, DMSO- d_6): δ = 7.81 (d, J = 7.2 Hz, 2 H), 7.67 (br s, 1 H), 7.53–7.48 (m, 5 H), 7.47–7.43 (m, 2 H), 7.40–7.38 (m, 1 H), 3.81 (s, 3 H).

¹³C NMR (100 MHz, DMSO- d_6): δ = 166.7 (C), 152.2 (C), 148.6 (C), 132.8 (C), 129.9 (2×CH), 129.3 (CH), 128.8 (C), 128.6 (2×CH), 128.3 (2×CH), 128.0 (CH), 127.7 (2×CH), 101.1 (C), 38.0 (CH₃).

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₇H₁₅N₃NaOS: 332.0834; found: 332.0842.

Synthesis of 5-((1-Methyl-3,5-diphenyl-1*H*-pyrazol-4-yl)thio)-1*H*-tetrazole (5a)³⁰

 NaN_3 (39.0 mg, 0.6 mmol) and $ZnCl_2$ (68.2 mg, 0.5 mmol) were added to a solution of 1-methyl-3,5-diphenyl-4-thiocyanato-1*H*-pyrazole (**3a**, 145.7 mg, 0.5 mmol) in *i*-PrOH (2 mL) at 50 °C. The resulting solutions of the solution of

tion was stirred at 50 °C for 24 h, then the solvent was evaporated. Then, 5% NaOH (25 mL) was added and the mixture was stirred at r.t. for 20 min until the original precipitate had dissolved and a suspension of $Zn(OH)_2$ was observed. The precipitate was filtered and washed with 5% NaOH (10 mL). The pH of filtrate was adjusted to pH 1.0 with concentrated HCl, which caused the product to form. The product was filtered, washed with 9% HCl (2 × 10 mL) and dried.

Product 5a (91%, 152.0 mg) was obtained as a white solid.

Mp 178.1–180.9 °C; $R_f = 0.33$ (100% EtOAc).

IR (neat): 1476 (C-N) cm⁻¹.

 ^1H NMR (400 MHz, CD_3OD): δ = 7.76–7.74 (m, 2 H), 7.48–7.36 (m, 8 H), 3.87 (s, 3 H).

¹³C NMR (100 MHz, CD₃OD): δ = 157.8 (C), 154.2 (C), 151.1 (C), 133.0 (C), 131.1 (CH), 131.0 (2×CH), 130.0 (2×CH), 129.8 (CH), 129.5 (2×CH), 129.3 (C), 129.2 (2×CH), 99.1 (C), 38.5 (CH₃).

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₇H₁₄N₆NaS: 357.0898; found: 357.0905.

Synthesis of 1,2-Bis(1-methyl-3,5-diphenyl-1H-pyrazol-4-yl)disulfane (6a) $^{\rm 3b}$

A solution of 1-methyl-3,5-diphenyl-4-thiocyanato-1*H*-pyrazole (**3a**, 145.7 mg, 0.5 mmol) in anhydrous THF (2 mL) was added to a suspension of LiAlH₄ (20.9 mg, 0.55 mmol) in anhydrous THF (4 mL) at 0 °C. The resulting mixture was stirred at r.t. overnight. After that time, water and 1.0 M HCl were added and the mixture was extracted with EtOAc (3 × 10 mL) and the combined organic layers were washed with brine (10 mL), dried over MgSO₄, filtered, and concentrated on a rotary evaporator.

Purification by column chromatography (30–70% EtOAc/hexanes) afforded **6a** (71%, 94.2 mg) as a pale-yellow solid.

Mp 223.5–224.0 °C; *R*_f = 0.57 (60% EtOAc/hexanes).

IR (neat): 1461 (C-N) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.76 (dd, J = 7.9, 2.1 Hz, 2 H), 7.42–7.41 (m, 3 H), 7.36–7.34 (m, 3 H), 7.10 (dd, J = 7.5, 2.0 Hz, 2 H), 3.64 (s, 3 H).

¹³C NMR (100 MHz, CDCl₃): δ = 152.7 (2×C), 148.7 (2×C), 132.1 (2×C), 130.1 (4×CH), 128.9 (2×CH), 128.15 (2×C), 128.13 (6×CH), 128.0 (4×CH), 127.9 (2×CH), 107.5 (2×C), 37.6 (2×CH₃).

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₆H₁₅N₂S: 553.1497; found: 553.1579.

Funding Information

We thank the Thailand Research Fund (BRG5850012 and IRN58W0005), the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Postgraduate Education Research Development Office, Office of the Higher Education Commission, Ministry of Education, Mahidol University under the National Research Universities Initiative, PICS6663 ISMA (France/Thailand), and the Franco-Thai Cooperation Program in Higher Education and Research (PHC Siam 2017) for financial support.

Acknowledgment

We also acknowledge the Institute for the Promotion of Teaching Science and Technology through the Development and Promotion of Science and Technology Talents Project (DPST), and Science Achievement

THIEME

Scholarship of Thailand (SAST) for student scholarships to T.S. and O.K., respectively and the National Research Council of Thailand (NRCT) for a postdoctoral research assistantship to P.K.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591891.

References

- (a) Solladie, G. Synthesis of Sulfides, Sulfoxides and Sulfones, In Comprehensiue Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, **1991**, 133. (b) Ogura, K. Sulfur Stabilization, In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, **1991**, 505. (c) Zhang, D.; Xu, W.; Jia, C.; Li, H.; Zhu, D. ARKIVOC **2003**, 165. (d) Gingras, M.; Chabre, Y. M.; Roy, M.; Roy, R. Chem. Soc. Rev. **2013**, 42, 4823. (e) Garoufis, A.; Hadjikakou, S. K.; Hadjiliadis, N. Coord. Chem. Rev. **2009**, 253, 1384. (f) Ali, V.; Nozaki, T. Clin. Microbiol. Rev. **2007**, 20, 164. (g) Faucher, A.-M.; White, P. W.; Brochu, C.; Grand-Maître, C.; Rancourt, J.; Fazal, G. J. Med. Chem. **2004**, 47, 18. (h) Dutta, S.; Abe, H.; Aoyagi, S.; Kibayashi, C.; Gates, K. S. J. Am. Chem. Soc. **2005**, 127, 15004. (i) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. J. Med. Chem. **2014**, 57, 2832. (j) Murphy, A. R.; Fréchet, J. M. J. Chem. Rev. **2007**, 107, 1066.
- (2) (a) Owens, R. G. In Fungicides: An Advanced Treatise; Torgeson, D. C., Ed.; Academic Press: New York, 1967, Chapter 5, p 14. (b) Houmam, A.; Hamed, E. M.; Still, I. W. J. J. Am. Chem. Soc. 2003, 125, 7258. (c) MacKinnon, D. L.; Farrell, A. P. Environ. Toxicol. Chem. 1992, 11, 1541. (d) Pham, A. T.; Ichiba, T.; Yoshida, W. Y.; Scheuer, P. J. Tetrahedron Lett. 1991, 32, 4843. (e) Patil, A. D.; Freyer, A. J.; Reichwein, R.; Carte, B.; Killmer, L. B.; Faucette, L.; Johnson, R. K. Tetrahedron Lett. 1997, 38, 363. (f) Pina, I. C.; Gautschi, J. T.; Wang, G.-Y.-S.; Sanders, M. L.; Schmitz, F. J.; France, D.; Cornell-Kennon, S.; Sambucetti, L. C.; Remiszewski, S. W.; Perez, L. B.; Bair, K. W.; Crews, P. J. Org. Chem. 2003, 68, 3866. (g) Yasman; Edrada, R. A.; Wray, V.; Proksch, P. J. Nat. Prod. 2003, 66, 1512. (h) Elhalem, E.; Bailey, B. N.; Docampo, R.; Ujváry, I.; Szajnman, S. H.; Rodriguez, J. B. J. Med. Chem. 2002, 45, 3984. (i) Promkatkaew, M.; Gleeson, D.; Hannongbua, S.; Gleeson, M. P. Chem. Res. Toxicol. 2014, 27, 51.
- (3) (a) Coates, R. M.; Ho, A. W. W. J. Am. Chem. Soc. 1969, 91, 7544.
 (b) Wei, Z.-L.; Kozikowski, A. P. J. Org. Chem. 2003, 68, 9116.
 (c) Brock, N. L.; Nikolay, A.; Dickschat, J. S. Chem. Commun. 2014, 5487.
- (4) (a) Verkruijsse, H. D.; Brandsma, L. Synthesis 1991, 818. (b) Still,
 I. W. J.; Toste, F. D. J. Org. Chem. 1996, 61, 7677. (c) Ke, F.; Qu, Y.;
 Jiang, Z.; Li, Z.; Wu, D.; Zhou, X. Org. Lett. 2011, 13, 454.
- (5) (a) Riemschneider, R.; Wojahn, F.; Orlick, G. J. Am. Chem. Soc. 1951, 73, 5905. (b) Riemschneider, R. J. Am. Chem. Soc. 1956, 78, 844. (c) Guo, L.-N.; Gu, Y.-R.; Yang, H.; Hu, J. Org. Biomol. Chem. 2016, 14, 3098.
- (6) (a) Bunyagidj, C.; Piotrowska, H.; Aldridge, M. H. J. Org. Chem. 1981, 46, 3335. (b) Toste, F. D.; LaRonde, F.; Still, I. W. J. Tetrahedron Lett. 1995, 36, 2949.
- (7) (a) Prabhu, K. R.; Ramesha, A. R.; Chandrasekaran, S. J. Org. Chem. 1995, 60, 7142. (b) Sengupta, D.; Basu, B. Tetrahedron Lett. 2013, 54, 2277.
- (8) Johnson, T. B.; Douglass, I. B. J. Am. Chem. Soc. 1939, 61, 2548.

- (9) Blanco, J. M.; Caamano, O.; Fernández, F.; Gómez, G.; López, C. Tetrahedron: Asymmetry **1992**, 3, 749.
- (10) Some examples of Sandmeyer type reactions to prepare thiocyanates: (a) Guy, R. G.; Lau, R.; Rahman, A. U.; Swinbourne, F. J. *Spectrochim. Acta, Part A* **1997**, *53*, 361. (b) Butt, N.; Guy, R. G.; Winbourne, F. J. *Spectrochim. Acta, Part A* **1995**, *51*, 1715. (c) Bangher, A.; Guy, R. G.; Pichot, Y.; Sillence, J. M.; Steel, C. J.; Swinbourne, F. J.; Tamiatti, K. *Spectrochim. Acta, Part A* **1995**, *51*, 1703. (d) Whiteker, G. T.; Lippard, S. J. *Tetrahedron Lett.* **1991**, *32*, 5019. (e) Yokoyama, M.; Ohteki, H.; Kurauchi, M.; Hoshi, K.; Yanagisawa, E.; Suzuki, A.; Imamoto, T. *J. Chem. Soc., Perkin Trans. 1* **1984**, 2635. (f) Barbero, M.; Degani, I.; Diulgheroff, N.; Dughera, S.; Fochi, R. *Synthesis* **2001**, 585.
- (11) (a) Fujiki, K.; Yoshida, E. Synth. Commun. 1999, 29, 3289.
 (b) Takagi, K.; Takachi, H.; Sasaki, K. J. Org. Chem. 1995, 60, 6552.
 (c) Teng, F.; Yu, J.-T.; Yang, H.; Jiang, Y.; Cheng, J. Chem. Commun. 2014, 12139.
- (12) (a) Suzuki, H.; Abe, H. Synth. Commun. 1996, 18, 3413. (b) Sun, N.; Che, L.; Mo, W.; Hu, B.; Shen, Z.; Hu, X. Org. Biomol. Chem. 2015, 13, 691.
- (13) For selected examples, see: (a) Nair, V.; Nair, L. G. *Tetrahedron Lett.* **1998**, 39, 4585. (b) Yang, H.; Duan, X.-H.; Zhao, J.-F.; Guo, L.-N. Org. *Lett.* **2015**, *17*, 1998. (c) Yang, X.; She, Y.; Chong, Y.; Zhai, H.; Zhu, H.; Chen, B.; Huang, G.; Yan, R. *Adv. Synth. Catal.* **2016**, *358*, 3130. (d) Terent'ev, A. O.; Yu Sharipov, M.; Glinuskin, A. P.; Krylov, I. B.; Gaidarenko, D. V.; Nikishin, G. I. *Mendeleev Commun.* **2016**, *26*, 226. (e) Zhang, X.-Z.; Ge, D.-L.; Chen, S.-Y.; Yu, X.-Q. *RSC Adv.* **2016**, *6*, 66320. (f) Jiang, G.; Zhu, C.; Li, J.; Wu, W.; Jiang, H. *Adv. Synth. Catal.* **2017**, *359*, 1208.
- (14) (a) Ashish, K. T.; Anil, M. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2006, 45, 489. (b) Mert, S.; Kasımoğulları, R.; İça, T.; Çolak, F.; Altun, A.; Ok, S. Eur. J. Med. Chem. 2014, 78, 86.
- (15) (a) Sangapure, S. S.; Bodke, Y.; Raga, B. Indian J. Heterocycl. Chem. 2001, 11, 31. (b) Lupsor, S.; Aonofriesei, F.; Iovu, M. Med. Chem. Res. 2012, 21, 3035. (c) Kumar, R.; Arora, J.; Ruhil, S.; Phougat, N.; Chhillar, A. K.; Prasad, A. K. Adv. Chem. 2014, 329681.
- (16) Nimavat, K. S.; Popat, K. H. Indian J. Heterocycl. Chem. 2007, 16, 333.
- (17) (a) Udupi, R. H.; Bhat, A. R.; Krishna, K. Indian J. Heterocycl. Chem. **1998**, *8*, 143. (b) Abd-El, Gawad. N. M.; Georgey, H. H.; Ibrahim, N. A.; Amin, N. H.; Abdelsalam, R. M. Arch. Pharmacal. Res. **2012**, 35, 807.
- (18) Ouyang, G.; Cai, X.-J.; Chen, Z.; Song, B.-A.; Bhadury, P. S.; Yang, S.; Jin, L.-H.; Xue, W.; Hu, D.-Y.; Zeng, S. J. Agric. Food Chem. 2008, 56, 10160.
- (19) Rangaswamy, J.; Kumar, H. V.; Harini, S. T.; Naik, N. Bioorg. Med. Chem. Lett. **2012**, *22*, 4773.
- (20) Hassan, G. S.; Kadry, H. H.; Abou-Seri, S. M.; Ali, M. M.; El-Din, Mahmoud. A. E. *Bioorg. Med. Chem.* **2011**, *19*, 6808.
- (21) Turan-Zitouni, G.; Chevallet, P.; Kiliç, F. S.; Erol, K. Eur. J. Med. Chem. 2000, 35, 635.
- (22) Chetan, B. P.; Mulwar, V. V. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. **2000**, 44, 232.
- (23) Palaska, E.; Aytemir, M.; Uzbay, İ. T.; Erol, D. *Eur. J. Med. Chem.* **2001**, *36*, 539.
- (24) Souza, F. R.; Souza, V. T.; Ratzlaff, V.; Borges, L. P.; Oliveira, M. R.; Bonacorso, H. G.; Zanatta, N.; Martins, M. A. P.; Mello, C. F. *Eur. J. Pharmacol.* **2002**, *451*, 141.
- (25) Ashok, K.; Archana; Sharma, S. *Indian J. Heterocycl. Chem.* **2001**, 9, 197.

		10	
		THIEME	
SynOpen	T. Songsichan et al.	OPEN ACCESS	Pape
	-		

- (26) Baraldi, P. G.; Caciari, B.; Romagnoli, R.; Spalluto, G.; Moro, S.; Klotz, K.-N.; Leung, E.; Varani, K.; Gessi, S.; Merighi, S.; Borea, P. A. J. Med. Chem. **2000**, 43, 4768.
- (27) (a) Sauter, H.; Steglich, W.; Anke, T. *Angew. Chem. Int. Ed.* **1999**, 38, 1328. (b) Shiga, Y.; Okada, I.; Ikeda, Y.; Takizawa, E.; Fukuchi, T. *J. Pestic. Sci.* **2003**, *28*, 313. (c) Ohno, R.; Watanabe, A.; Matsukawa, T.; Ueda, T.; Sakurai, H.; Hori, M.; Hirai, K. J. Pestic. Sci. **2004**, *29*, 15.
- (28) For selected examples, see: (a) Chakrabarty, M.; Sarkar, S. *Tetrahedron Lett.* 2003, 44, 8131. (b) Yadav, J. S.; Reddy, B. V. S.; Shubashree, S.; Sadashiv, K. *Tetrahedron Lett.* 2004, 45, 2951. (c) Wu, G.; Liu, Q.; Shen, Y.; Wu, W.; Wu, L. *Tetrahedron Lett.* 2005, 46, 5831. (d) Yadav, J. S.; Reddy, B. V. S.; Krishna, A. D.; Reddy, Ch. S.; Narsaiah, A. V. *Synthesis* 2005, 961. (e) Yadav, J. S.; Reddy, B. V. S.; Krishna, B. B. M. *Synthesis* 2008, 3779. (f) Pan, X.-Q.; Lei, M.-Y.; Zou, J.-P.; Zhang, W. *Tetrahedron Lett.* 2009, 50, 347. (g) Iranpoor, N.; Firouzabadi, H.; Khalili, D.; Shahin, R. *Tetrahedron Lett.* 2013, 2, 691. (i) Fotouhi, L; Nikoofar, K. *Tetrahedron Lett.* 2013,

54, 2903. (j) Fan, W.; Yang, Q.; Xu, F.; Li, P. J. Org. Chem. 2014, 79, 10588. (k) Zhu, D.; Chang, D.; Shi, L. Chem. Commun. 2015, 7180. (l) Mitra, S.; Ghosh, M.; Mishra, S.; Hajra, A. J. Org. Chem. 2015, 80, 8275. (m) Yang, D.; Yan, K.; Wei, W.; Li, G.; Lu, S.; Zhao, C.; Tian, L.; Wang, H. J. Org. Chem. 2015, 80, 11073. (n) Zhang, H.; Wei, Q.; Wei, S.; Qu, J.; Wang, B. Eur. J. Org. Chem. 2016, 3373. (o) Khalili, D. New J. Chem. 2016, 40, 2547. (p) Venkanna, P.; Rajanna, K. C.; Kumar, M. S.; Venkateswarlu, M.; Ali, M. M. Synlett 2016, 27, 237. (q) Chen, J.; Wang, T.; Wang, T.; Lin, A.; Yao, H.; Xu, J. Org. Chem. Front. 2017, 4, 130. (r) Mete, T. B.; Khopade, T. M.; Bhat, R. G. Tetrahedron Lett. 2017, 58, 415.

- (29) (a) Finar, I. L.; Godfrey, K. E. J. Chem. Soc. 1954, 2293.
 (b) Kinugawa, J.; Ochiai, M. Chem. Pharm. Bull. 1964, 12, 23.
 (c) Thiruvikraman, S. V.; Seshadri, S. Bull. Chem. Soc. Jpn. 1985, 58, 785. (d) Kokorekin, V. A.; Sigacheva, V. L.; Petrosyan, V. A. Tetrahedron Lett. 2014, 55, 4306.
- (30) Vorona, S.; Artamonova, T.; Zevatskii, Y.; Myznikov, L. *Synthesis* **2014**, *4*6, 781.