

Iodine as a New Catalyst for the Condensation of 2-Hydroxy-2,2'bisindan-1,1',3,3'-tetrone with Cyclic Enaminones: Synthesis of Spiro-dihydropyridine Derivatives under Acid-Free Conditions

Firouz Matloubi Moghaddam*[®] Vahid Saberi Seyedmahmoudreza Keshavarz

Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, PO Box 111559516 Tehran, Iran matloubi@sharif.edu

¹⁰ examples 57-92% yield

Abstract Iodine has been used as a new catalyst for the synthesis of spiro-dihydropyridine derivatives by the condensation of cyclic enaminones and 2-hydroxy-2,2'-bisindan-1,1',3,3'-tetrone.

Key words iodine, aminouracil, spiro-dihydropyridine

The properties of molecular iodine, including its Lewis acidity, lead to a range of applications in organic synthesis.¹⁻⁴ Nitrogen-containing heterocyclic compounds have been of interest for the development of organic synthesisthrough decades.⁵⁻⁸ Among them, 1,4-dihydropyridines (1,4-DHPs; Figure 1) are an important class of compounds in the field of vasodilation and bronchodilation, being potent calcium antagonists and calcium channel blockers.⁹⁻¹²

Spiro-heterocycles, due to their steric constraints, represent an important class of substances that often have interesting biological properties.^{13–15} Among them, spiro-dihydropyridine derivatives serve as important building blocks in a wide range of biologically active compounds.¹⁶ There are several synthetic methods available for the preparation of functionalized dihydropyridines.¹⁷

2-Hydroxy-2,2'-bisindan-1,1',3,3'-tetrone can be readily generated by acid or base catalyzed condensation of ninhydrin with 1,3-indanedione.¹⁸ Activation of 2-hydroxy-2,2'bisindan-1,1',3,3'-tetrone for electrophilic reactions has been achieved under acidic conditions such as AcOH/H₂SO₄ for addition of phenols,¹⁹ AcOH for enol condensation,²⁰ triflic acid,²¹ acidic magnetic nanoparticle for synthesis of pyrazoles,²² and silica-sulfuric acid for synthesis of dihydropyridines.²³ However, the use of acidic conditions can cause rearrangements and can also require high temperatures in some cases.

In the present work, in a continuation of our ongoing research program in the field of synthesis of spiro-heterocyclic compounds, we report the reaction of 2-hydroxy-2,2'biindan-1,1',3,3'-tetrone **1** and cyclic enaminones **2a–j** in the presence of molecular iodine under mild reaction conditions to form spiro-dihdydropyridines **3a–j** (Scheme 1).

Firstly, 1,3-indandione was reacted with ninhydrin in the presence of triethylamine in EtOH at room temperature, to afford 2-hydroxy-2,2'-bisindan-1,1',3,3'-tetrone **1**. The reaction of compound **1** was tested initially with 6-aminouracil in dimethyl sulfoxide (DMSO) at 120 °C without catalyst. However, these conditions did not afford the desired product **3a** (Table 1, entry 2). The use of an acidic catalyst such as *p*-TSA or acetic acid gave **3a** in moderate yields (entries 3 and 4). Our group has previously used molecular iodine as a catalyst^{1,24} and when we examined the use of iodine in DMSO at 120 °C the reaction proceeded in excellent yield (entry 5). To study the effect of temperature, an additional experiment was performed at 100 °C, resulting in 91% yield of **3a** after 4 hours (entry 8). However, when the

۸

reaction was performed at lower temperatures, the yield decreased dramatically (entries 9 and 10). When solvents such as *N*,*N*-dimethylformamide (DMF) and toluene were examined, again a decrease in the yield of the reaction was observed (entries 11 and 12). Therefore, 20 mol% I_2 in DMSO at 100 °C was established as the optimal conditions for the current methodology.

To investigate the scope of this reaction, a range of cyclic enaminones was used; the results are summarized in Table 2. All derivatives **3a–j** were obtained in high yields, although in the case of compounds **3i** and **3j** the yield of the reaction decreased slightly, presumably because the nitrogen of the 6-aminocoumarin is further substituted and therefore more sterically hindered.

All novel compounds **3a–f** were fully characterized by elemental analysis, IR, ¹H NMR, ¹³C NMR spectroscopic analysis and HRMS. For example, the HRMS spectrum of **3a** displayed m/z [M+H]⁺ at 398.0775 and the IR spectrum showed absorption bands at 3249, 1710, 1690, and 1666 cm–¹ assigned to NH stretching and five-membered ketone, amide, and α , β -unsaturated ketone carbonyl groups, respectively. The ¹H-decoupled ¹³C NMR spectrum of **3a** showed 18 distinct resonances, with a signal at 56 ppm being attributed to the spiro- carbon.

Finally, to investigate the scalability of our reaction, the reaction was conducted on a gram scale under the optimized reaction conditions and no significant changes in either reaction time or yield were observed (Scheme 2).

Table 1 Optimization of Reaction Conditions for the Preparation of 3a^a

Entry	Solvent	Catalyst	Catalyst (%)	Temp. (°C)	Time (h)	Yield (%) ^b	
1	DMSO	none	-	100	24	-	
2	DMSO	none	-	120	24	-	
3	DMSO	p-TSA	100	120	12	42	
4	DMSO	HOAc	100	120	12	37	
5	DMSO	I ₂	100	120	12	94	
6	DMSO	I ₂	20	120	12	92	
7	DMSO	I ₂	10	120	12	65	
8	DMSO	l ₂	20	100	4	91	
9	DMSO	I ₂	20	80	4	44	
10	DMSO	I ₂	20	50	4	23	
11	DMF	I ₂	20	100	4	67	
12	toluene	I ₂	20	100	4	35	

^a Reagents and conditions: 1 (1 mmol), 2a (1 mmol), solvent (4 mL), in a capped vial.

^b Isolated yield.

Entry	Cyclic Enai	ninones	Product		Yield (%) ^b
1	2a	H ₂ N H	3a		91
2	2Ь		3Ь		88
3	2c	H_2N H_3 H_3 H_3 H_2N H_3 $H_$	3с	O O O O O O O O O O O O O O O O O O O	85
5	2d	H ₂ N H H ₂ N S	3d		92
5	2e	H ₂ N H ₂ N H ₃	Зе	O O O O O O CH3	86
6	2f	H_2N H_2N H_2N H_2 H_3 H_2 H_3 H_3 H_2 H_3 H	3f	0,00,00,CH3	80

N N S H I CH₃

		THIEME	
SynOpen	F. Matloubi Moghaddam et al.	OPEN ACCESS	Letter

Table 2 (continued)

Entry	Cyclic Ena	minones	Product	Yield (%) ^b
7	2g	H ₂ N H	3g	73
8	2h	H ₂ N	3h	
9	2i	HN ^{Ph}	3i	61
10	2j	HN Ph	3j	57 N

^a Reagents and conditions: **1** (1 mmol), **2a–j** (1 mmol), DMSO (4 mL), I₂ (20 mol%) in a capped vial. ^b Isolated yield.

Although we have not established the mechanism of the reaction experimentally, a plausible mechanism is proposed in Scheme 3. The reaction between molecular iodine and hydroxy compound **1** could produce two intermediates, Path A gives intermediate **4**, which is reported to be formed under acidic conditions,^{19,21} and Path B leads to intermediate **5**. Michael addition of enaminone **2a** to either the double bond of **4** or the carbocationic center of **5** gives intermediate **7**, which undergoes intramolecular cyclocondensation to produce the desired product.

In conclusion, we have developed an efficient methodology for the synthesis of spiro-dihydropyridines in high yield from 2-hydroxy-2,2'-biindan-1,1',3,3'-tetrone as starting material.^{25,26} Activation of 2-hydroxy-2,2'-bisindan-1,1',3,3'-tetrone with molecular iodine as a mild catalyst under acid-free reaction conditions and a simple work-up procedure are features of this method.

Letter

Scheme 3 Proposed mechanism of formation of spiro-dihydropyrans 3

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591918.

References

- (1) Moghaddam, F. M.; Khodabakhshi, M. R.; Aminaee, M. Tetrahedron Lett. **2014**, 55, 4720.
- (2) Alizadeh, A.; Saberi, V.; Mokhtari, J. Synlett 2013, 24, 1825.
- (3) Zhang, J.; Gao, Q.; Wu, X.; Geng, X.; Wu, Y. D.; Wu, A. Org. Lett. 2016, 18, 1686.
- (4) Hao, W. J.; Wang, S. Y.; Ji, S. J. ACS Catal. 2013, 3, 2501.
- (5) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199.
- (6) Thansandote, P.; Lautens, M. Chem. Eur. J. 2009, 15, 5874.
- (7) Zhu, L.; Cheng, L.; Zhang, Y.; Xie, R.; You, J. J. Org. Chem. 2007, 72, 2737.
- (8) Martín, R.; Rodriguez, Rivero. M.; Buchwald, S. L. Angew. Chem. Int. Ed. 2006, 45, 7079.
- (9) (a) Safak, C.; Simsek, R. *Mini-Rev. Med. Chem.* 2006, *6*, 747.
 (b) Katoh, M.; Nakajima, M.; Shimada, N.; Yamazaki, H.; Yokoi, T. *Eur. J. Clin. Pharmacol.* 2000, *55*, 843. (c) Ruggenenti, P.; Perna, A.; Benini, R.; Remuzzi, G. *J. Am. Soc. Nephrol.* 1998, *9*, 2096.

- (10) (a) Glossmann, H.; Ferry, D. R.; Goll, A.; Striessnig, J.; Zernig, G. Arzneim.-Forsch. 1985, 35, 1917. (b) Matowe, W. C.; Akula, M.; Knaus, E. E.; Wolowyk, M. W. Proc. West. Pharmacol. Soc. 1989, 32, 305.
- (11) Vo, D.; Matowe, W. C.; Ramesh, M.; Iqbal, N.; Wolowyk, M. W.; Howlett, S. E.; Knaus, E. E. J. Med. Chem. **1995**, *38*, 2851.
- (12) (a) Vo, D.; Nguyen, J. T.; McEwen, C.-A.; Shan, R.; Knaus, E. E. Drug Dev. Res. 2002, 56, 1. (b) Edraki, N.; Mehdipour, A. R.; Khoshneviszadeh, M.; Miri, R. Drug Discovery Today 2009, 14, 1058.
- (13) Zhang, Y. L.; Li, Y. F.; Wang, J. W.; Yu, B.; Shi, Y. K.; Liu, H. M. *Steroids* **2016**, *109*, 22.
- (14) Parameswarappa, S. G.; Pigge, F. C. J. Org. Chem. 2012, 77, 8038.
- (15) Tejedor, D.; Cotos, L.; Méndez-Abt, G.; García-Tellado, F. J. Org. *Chem.* **2014**, 79, 10655.
- (16) Auria-Luna, F.; Marqués-López, E.; Mohammadi, S.; Heiran, R.; Herrera, R. P. *Molecules* **2015**, *20*, 15807.
- (17) (a) Senczyszyn, J.; Brice, H.; Clayden, J. Org. Lett. 2013, 15, 1922.
 (b) Debnath, K.; Singha, K.; Pramanik, A. RSC Adv. 2015, 5, 31866. (c) Sarkar, P.; Mukhopadhyay, C. Tetrahedron Lett. 2016, 57, 4306.
- (18) (a) Campagna, F.; Carotti, A.; Casini, G.; Ferappi, M. *Gazz. Chim. Ital.* **1983**, *113*, 507. (b) Schoenberg, A.; Singer, E. *Chem. Ber.* **1970**, *103*, 3871.
- (19) Das, S.; Pramanik, A.; Fröhlich, R.; Patra, A. *Tetrahedron* **2004**, *60*, 10197.
- (20) Das, S.; Fröhlich, R.; Pramanik, R. J. Chem. Res. 2005, 9, 572.
- (21) Das, S.; Fröhlich, R.; Pramanik, R. J. Chem. Res. 2007, 1, 5.
- (22) Ashis, K.; Mukherjee, S.; Pramanik, R. RSC Adv. 2015, 130, 107847.
- (23) Ashis, K. R.; Pramanik, R. Mol. Diversity 2015, 3, 459.
- (24) (a) Moghaddam, F. M.; Bardajee, R. G.; Ismaili, H.; Dokht, M.; Taimoory, S. Synth. Commun. 2006, 36, 2543. (b) Moghaddam, F. M.; Khodabakhshi, M. R.; Aminaee, M. Tetrahedron Lett. 2014, 55, 4720.
- (25) **Typical procedure for the synthesis of spiro-dihydropyridines 3a–j:** A mixture of 2-hydroxy-2,2'-bisindan-1,1',3,3'tetrone **1** (1 mmol), cyclic enaminone **2a–f** (1 mmol) and molecular iodine (20 mol%) in DMSO (4 mL) was stirred at 100 °C for 4 h. After completion of the reaction (monitored by TLC, ethyl acetate/*n*-hexane, 1:2) the reaction mixture was allowed to cool to room temperature. Water was added and the precipitate was filtered off and washed with acetone to give the product **3a–j**.
- (26) **Synthesis of 2-hydroxy-2,2'-bisindan-1,1',3,3'-tetrone 1:** A mixture of 1,3-indandione (10 mmol), ninhydrin (10 mmol), and triethylamine (1 mmol) in EtOH (50 mL) was stirred at room temperature for 5 h. The precipitate was filtered and washed with EtOH (2×5 mL) to give **1**. Yellow powder; mp 187–190 °C; ¹H NMR (500 MHz, CDCl₃): δ = 8.00–7.93 (m, 2 H, Ar), 7.92–7.83 (m, 6 H, Ar), 5.47 (s, 1 H, OH), 3.96 (s, 1 H, CH); ¹³C NMR (125 MHz, CDCl₃): δ = 197, 196, 142, 141, 137, 136, 124, 124, 76, 53.

Analytical data for spiro[indene-2,5'-indeno[2',1':5,6]pyrido[2,3-d]pyrimidine]-1,2',3,4',6'(1'H,3'H,11'H)-pentaone

(**3a**): Yield: 0.361 g (91%); red powder; mp 212–215 °C (dec.); IR (KBr): 3249, 2917, 1710, 1690, 1666 cm⁻¹; ¹H NMR (500 MHz, D₂O): δ = 7.89–7.85 (m, 4 H, Ar-H), 7.36 (d, *J* = 6.9 Hz, 1 H, Ar-H), 7.24–7.17 (m, 2 H, Ar-H), 7.00 (d, *J* = 6.9 Hz, 1 H, Ar-H); ¹³C NMR (125 MHz, D₂O): δ = 209, 187, 173, 170, 165, 162, 141, 138, 137, 136, 131, 130, 122, 119, 119, 100, 92, 56; Anal. Calcd for C₂₂H₁₁N₃O₅: C, 66.50; H, 2.79; N, 10.58. Found: C, 65.90; H, 2.81; N, 10.61; HRMS: *m/z* [M+H]⁺ calcd. for C₂₂H₁₁N₃O₅: 398.0777; found: 398.0775.