Synlett 2018; 29(11): 1479-1484
DOI: 10.1055/s-0036-1591992
letter
© Georg Thieme Verlag Stuttgart · New York

Alternative Metal-Free Synthesis of Diorganoyl Selenides and Tellurides Mediated by Oxone®

Gelson Perin*
a   Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas – UFPel, PO Box 354, 96010-900, Pelotas, RS, Brazil   Email: gelson_perin@ufpel.edu.br   Email: diego.alves@ufpel.edu.br
,
Luis Fernando B. Duarte
a   Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas – UFPel, PO Box 354, 96010-900, Pelotas, RS, Brazil   Email: gelson_perin@ufpel.edu.br   Email: diego.alves@ufpel.edu.br
,
José S. S. Neto
a   Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas – UFPel, PO Box 354, 96010-900, Pelotas, RS, Brazil   Email: gelson_perin@ufpel.edu.br   Email: diego.alves@ufpel.edu.br
,
Márcio S. Silva
b   Centro de Ciências Naturais e Humanas – CCNH, Universidade Federal do ABC – UFABC, 09210-580, Santo André, SP, Brazil
,
Diego Alves*
a   Laboratório de Síntese Orgânica Limpa – LASOL, CCQFA, Universidade Federal de Pelotas – UFPel, PO Box 354, 96010-900, Pelotas, RS, Brazil   Email: gelson_perin@ufpel.edu.br   Email: diego.alves@ufpel.edu.br
› Author Affiliations
Further Information

Publication History

Received: 21 March 2018

Accepted after revision: 22 March 2018

Publication Date:
23 April 2018 (online)


Abstract

We herein describe an alternative metal-free methodology for the synthesis of diorganyl selenides and tellurides mediated by ­Oxone®. The products were obtained in moderate to excellent yields by reactions of diorganyl diselenides or ditellurides with aryl boronic acids mediated by Oxone® with use of EtOH as the solvent. The methodology is applicable to a broad scope of diorganyl dichalcogenides and aryl boronic acids containing electron-rich, electron-poor, and sterically hindered substituents.

Supporting Information

 
  • References and Notes

    • 1a Perin G. Alves D. Jacob RG. Barcellos AM. Soares LK. Lenardão EJ. ChemistrySelect 2016; 1: 205
    • 1b Perin G. Lenardão EJ. Jacob RG. Panatieri RB. Chem. Rev. 2009; 109: 1277
    • 1c Zeni G. Ludtke DS. Panatieri RB. Braga AL. Chem. Rev. 2006; 106: 1032
    • 1d Zeni G. Braga AL. Stefani HA. Acc. Chem. Res. 2003; 36: 731
    • 1e Nogueira CW. Zeni G. Rocha JB. T. Chem. Rev. 2004; 104: 6255
    • 2a PATAI’s Chemistry of Functional Groups: Organic Selenium and Tellurium Compounds. Patai S. Rappoport Z. Wiley; Chichester: 2013
    • 2b Petragnani N. Stefani HA. Tellurium in Organic Synthesis . Academic Press; London: 2007. 2nd ed.
    • 2c Santi C. In Organoselenium Chemistry between Synthesis and Biochemistry. Bentham Books; 2014
    • 2d Alberto EE. Braga AL. In Selenium and Tellurium ChemistryFrom Small Molecules to Biomolecules and Materials . Derek WJ. Risto L. Springer; Berlin Heidelberg: 2011
    • 3a Mazery RD. Pullez M. Lopez F. Harutyunyan SR. Minnaard AJ. Feringa BL. J. Am. Chem. Soc. 2005; 127: 9966
    • 3b Trost BM. Waser J. Meyer A. J. Am. Chem. Soc. 2007; 129: 14556
    • 3c Wever WJ. Bogart JW. Baccile JA. Chan AN. Schroeder FC. Bowers AA. J. Am. Chem. Soc. 2015; 137: 3494
    • 3d Zeni G. Panatieri RB. Lissner E. Menezes PH. Braga AL. Stefani HA. Org. Lett. 2001; 3: 819
    • 3e Alves D. Nogueira CW. Zeni G. Tetrahedron Lett. 2005; 46: 8761
    • 4a Alves D. Goldani B. Lenardão EJ. Perin G. Schumacher RF. Paixão MW. Chem. Rec. 2018; DOI: doi: 10.1002/tcr.201700058.
    • 4b Freudendahl DM. Shahzad SA. Wirth T. Eur. J. Org. Chem. 2009; 1649
    • 4c Freudendahl DM. Santoro S. Shahzad SA. Santi C. Wirth T. Angew. Chem. Int. Ed. 2009; 48: 8409
    • 4d Santoro S. Azeredo JB. Nascimento V. Sancineto L. Braga AL. Santi C. RSC Adv. 2014; 4: 31521
    • 4e Godoi M. Paixão MW. Braga AL. Dalton Trans. 2011; 40: 11347
    • 4f Braga AL. Lüdtke DS. Vargas F. Curr. Org. Chem. 2006; 10: 1921

      Some examples:
    • 5a Sartori G. Jardim NS. Sari MH. M. Dobrachinski F. Pesarico AP. Rodrigues Jr LC. Cargnelutti J. Flores EF. Prigol M. Nogueira CW. J. Cell. Biochem. 2016; 117: 1638
    • 5b Sampaio TB. Pinton S. da Rocha JT. Gai BM. Nogueira CW. Eur. J. Pharmacol. 2017; 795: 28
    • 5c Venturini TP. Chassot F. Loreto ÉS. Keller JT. Azevedo MI. Zeni G. Santurio JM. Alves SH. Med. Mycol. 2016; 54: 550
    • 5d Libero FM. Xavier MC. D. Victoria FN. Nascente PS. Savegnago L. Perin G. Alves D. Tetrahedron Lett. 2012; 53: 3091
    • 5e Salgueiro WG. Goldani BS. Peres TV. Miranda-Vizuete A. Aschner M. Rocha JB. T. Alves D. Ávila DS. Free Radic. Biol. Med. 2017; 110: 133
    • 5f Savegnago L. Borges VC. Alves D. Jesse CR. Rocha JB. T. Nogueira CW. Life Sci. 2006; 79: 1546
    • 5g Ávila DS. Gubert P. Palma A. Colle D. Alves D. Nogueira CW. Rocha JB. T. Soares FA. A. Brain Res. Bull. 2008; 76: 114

      For recent reviews, see:
    • 6a Beletskaya IP. Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 6b Ananikov VP. Zalesskiy SS. Beletskaya IP. Curr. Org. Synth. 2011; 8: 2

    • Additional references:
    • 6c Ren K. Wang M. Wang L. Org. Biomol. Chem. 2009; 7: 4858
    • 6d Munbunjong W. Lee EH. Ngernmaneerat P. Kim SJ. Singh G. Chavasiri W. Jang DO. Tetrahedron 2009; 65: 2467
    • 6e Wang M. Ren K. Wang L. Adv. Synth. Catal. 2009; 351: 1586
    • 6f Goldani B. Ricordi VG. Seus N. Lenardão EJ. Schumacher RF. Alves D. J. Org. Chem. 2016; 81: 11472
    • 6g Mohan B. Yoon C. Jang S. Park KH. ChemCatChem 2015; 7: 405
    • 6h Roy S. Chatterjee T. Banerjee B. Salam N. Bhaumik A. Islam SM. RSC Adv. 2014; 4: 46075
    • 6i Zhao H. Jiang Y. Chen Q. Cai M. New J. Chem. 2015; 39: 2106
    • 6j Kumar A. Kumar S. Tetrahedron 2014; 70: 1763
    • 6k Ricordi VG. Freitas CS. Perin G. Lenardão EJ. Jacob RG. Savegnago L. Alves D. Green Chem. 2012; 14: 1030
    • 6l Alves D. Santos CG. Paixão MW. Soares LC. de Souza D. Rodrigues OE. D. Braga AL. Tetrahedron Lett. 2009; 50: 6635
    • 6m Taniguchi N. J. Org. Chem. 2007; 72: 1241
    • 6n Wang L. Wang M. Huang F. Synlett 2005; 2007
  • 7 Stephanou SE. US. Patent 2,802,722, 1957

    • For reviews, see:
    • 8a Hussain H. Green IR. Ahmed I. Chem. Rev. 2013; 113: 3329
    • 8b Adam W. Saha-Möller CR. Ganeshpure PA. Chem. Rev. 2001; 101: 3499

    • Some references:
    • 8c Hajipour AR. Mallakpour SE. Adibi H. Synth. Commun. 2001; 31: 1625
    • 8d Hajipour AR. Mallakpour SE. Adibi H. Chem. Lett. 2001; 164
    • 8e Lee K. -J. Cho HK. Song C. -E. Bull. Korean Chem. Soc. 2002; 23: 773
    • 8f Narender N. Srinivasu P. Ramakrishna Prasad M. Kulkarni SJ. Raghavan KV. Synth. Commun. 2002; 32: 2313
    • 8g Narender N. Srinivasu P. Kulkarni SJ. Raghavan KV. Synth. Commun. 2002; 32: 2319
    • 8h Lee K.-J. Lim KW. Chi DY. Bull. Korean Chem. Soc. 2001; 22: 549
    • 8i Bolm C. Magnus AS. Hildebrand JP. Org. Lett. 2000; 2: 1173
    • 8j Bolm C. Fey TJ. Chem. Commun. 1999; 1795
    • 8k Bragd PL. Besemer AC. van Bekkum H. Carbohydr. Polym. 2002; 49: 397
    • 8l Lee JC. Ku CH. Synlett 2002; 1679
    • 8m Akbalina ZF. Kabalnova NN. Zlotsky SS. Grigoriev IA. Shereshovets VV. Tolstikov GA. React. Kinet. Catal. Lett. 2001; 72: 147
    • 8n Fields JD. Kropp PJ. J. Org. Chem. 2000; 65: 5937
  • 9 Prasad CD. Kumar S. Sattar M. Adhikary A. Kumar S. Org. Biomol. Chem. 2013; 11: 8036
    • 10a Ward RS. Diaper RL. Sulfur Rep. 2001; 22: 251
    • 10b Ward RS. Diaper RL. Sulfur Lett. 2000; 23: 139
    • 10c Ceccherelli P. Curini M. Epifano F. Marcotullio MC. Rosati O. J. Org. Chem. 1995; 60: 8412
    • 10d Kupwade RV. Khot SS. Lad UP. Desai UV. Wadgaonkar PP. Res. Chem. Intermed. 2017; 43: 6875
    • 10e Parida KN. Chandra A. Moorthy JN. ChemistrySelect 2016; 3: 490
    • 10f Madabhushi S. Jillella R. Sriramoju V. Singh R. Green Chem. 2014; 16: 3125
    • 10g Zolfigol MA. Niknam K. Bagherzadeh M. Ghorbani-Choghamarani A. Koukabi N. Hajjami M. Kolvari E. J. Chin. Chem. Soc. 2007; 54: 1115
    • 10h Khiar N. Mallouk S. Valdivia V. Bougrin K. Soufiaoui M. Fernández I. Org. Lett. 2007; 9: 1255
    • 10i Natarajan P. Tetrahedron Lett. 2015; 56: 4131
    • 10j Wu G. Wu J. Wu J. Wu L. Synth. Commun. 2008; 38: 1036
    • 10k Sharma S. Pathare RS. Maurya AK. Gopal K. Roy TK. Sawant DM. Pardasani RT. Org. Lett. 2016; 18: 356
    • 10l Ceccherelli P. Curini M. Epifano F. Marcotullio MC. Rosati O. J. Org. Chem. 1995; 60: 8412
    • 10m Perin G. Santoni P. Barcellos AM. Nobre PC. Jacob RG. Lenardão EJ. Santi C. Eur. J. Org. Chem. 2018; 1224
  • 11 General Procedure for the Oxone®-Mediated Synthesis of Diorganoyl Selenides and Tellurides 3 To a Schlenk tube equipped with a small magnetic stirring bar were added the appropriate diorganoyl dichalcogenide (0.15 mmol), the appropriate aryl boronic acid (0.3 mmol), Oxone® (0.046 g, 0.3 mmol), and dry EtOH (0.5 mL). The resulting mixture was stirred at 60 °C until the total consumption of the starting materials. After that, the reaction mixture was cooled to room temperature and quenched with water (5 mL). Then, the mixture was extracted with ethyl acetate (10 mL) and washed with water (3 x 10 mL). The combined organic layers were dried with anhydrous MgSO4 and concentrated under vacuum to yield the crude product, which was purified by flash chromatography on silica gel by using hexane or a mixture of hexane/ethyl acetate as the eluent. n-Octyl-4-methoxylphenyl-selenide (3r) Yield: 0.072 g (80%). 1H NMR (CDCl3 400 MHz): δ = 7.55 (d, J = 8.8 Hz, 2 H), 6.92 (d, J = 8.8 Hz, 2 H), 3.90 (s, 3 H), 2.92 (t, J = 7.6 Hz, 2 H), 2.70 (quint, J = 7.6 Hz, 2 H), 1.52–1.38 (m, 10 H), 0.98 (t, J = 7.6 Hz, 3 H). 13C NMR (CDCl3 100 MHz): δ = 159.1, 135.4, 120.3 114.7, 55.3, 31.8, 30.2, 29.8, 29.2 (2C), 29.1, 22.6, 14.1. MS: m/z (%) = 300 (76), 298 (40), 188 (89), 186 45), 108 (100), 57 (31), 343 (38). HRMS: m/z calcd for C15H25OSe [M]+: 301.1071; found: 301.1078.
  • 12 Webb KS. Levy D. Tetrahedron Lett. 1995; 36: 5117