Dimethylprolinol Versus Diphenylprolinol in CuBr_{2}-Catalyzed Enantioselective Allenylation of Terminal Alkynols

Dengke Ma
Xinyu Duan
Chunling Fu
Xin Huang*
Shengming Ma* ${ }^{\text {(}}$
Laboratory of Molecular Recognition and Synthesis Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, People's Republic of China
Xinhuangzju@zju.edu.cn
masm@sioc.ac.cn

Received: 24.03.2018
Accepted after revision: 30.03.2018
Published online: 08.05.2018
DOI: 10.1055/s-0036-1592007; Art ID: ss-2018-h0108-op
Abstract The CuBr_{2}-catalyzed enantioselective allenylation of terminal alkynols with carbon chains of different lengths has been developed. Compared with (S)- α, α-diphenylprolinol, the reaction using (S)- $\alpha, \alpha-\mathrm{di}$ methylprolinol as the chiral amine afforded optically active 1,3-disubstuted allenols with higher ee-values. Both aliphatic and aromatic aldehydes could be applied. The naturally occurring phlomic acid was synthesized in four steps from commercially available hex-5-yn-1-ol.

Key words CuBr_{2}, enantioselective allenylation, terminal alkynols, (S)α, α-diphenylprolinol, (S)- α, α-dimethylprolinol, phlomic acid

Optically active 1,3 -disubstituted allenes ${ }^{1}$ are the key unit in some natural products or bioactive compounds, such as marasin, ${ }^{2}(R)$-(-)-adenallene, ${ }^{3}$ and (R)-(-)-cytallene. ${ }^{4}$ Allenols are potential precursors for a series of 1,3disubstituted allenic natural products. ${ }^{5}$ Owing to the rich reactivity of the alcohol functionality towards other synthetically useful functional groups, including aldehydes, esters, amides, amines, halides, malonates, etc., chiral allenols are very useful starting materials in organic synthesis. So far, transition metal-catalyzed cyclization of allenols has been a powerful tool for the construction of oxa-cyclic compounds. ${ }^{6}$ In addition, the axial chirality of allenes may be transferred to central chirality under suitable reaction conditions. ${ }^{7}$ Thus, the highly enantioselective synthesis of 1,3disubstituted allenols is of high interest.

Recently, significant advances on the synthesis of axially chiral allenes with functionalized groups such as boronates, alcohols, esters, amides, malonates, etc. have been achieved. ${ }^{1,8}$ In 2015, we reported the CuBr_{2}-catalyzed highly enantioselective synthesis of optically active allenes from terminal alkynes, aldehydes, and (R)- or (S)- α, α-diphenylprolinol (Scheme 1, Equation 1). ${ }^{9}$ However, the enantioselectivity for some α-allenols with longer carbon chains
between the allene moiety and alcohol functionality is not satisfactory (see also the data in Table 1). To our delight, when (S)- α, α-dimethylprolinol was used instead of (S)- $\alpha, \alpha-$ diphenylprolinol, the enantioselectivity could be improved to a satisfactory level. ${ }^{10}$ Reported methods for the preparation of optically active 1,3-disubstituted allenols usually suffered from lengthy steps, harsh conditions, limited scopes, and low enantioselectivity, etc. ${ }^{1 \mathrm{~b}, 11}$ Particularly, reports on the preparation of optically active allenols with longer carbon chains than γ-allenols are rare. Herein, we wish to report our recent investigations on developing a general access to these 1,3-disubstituted allenols with a practical enantioselectivity from the readily available terminal alkynols (Scheme 1, Equation 2). ${ }^{12}$

Our previous work:

$\mathrm{FG}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{CHPhOH},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ $\mathrm{CH}_{2} \mathrm{NHTs}, \mathrm{CH}_{2} \mathrm{NHBz}, \mathrm{CH}_{2} \mathrm{NHBoc}$ $\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$, carbohydrate

This work:

$\mathrm{R}^{1}=$ alkyl, aryl
Scheme $1 \mathrm{CuBr}_{2}$-catalyzed enantioselective allenylation of terminal alkynes

Different terminal alkynols 1a-f were reacted with undecanal (2a) under CuBr_{2} ($20 \mathrm{~mol} \%$) in the presence of (S) α, α-diphenylprolinol $[(S)$-3a] and (S)- α, α-dimethylprolinol $[(S)-\mathbf{3 b}]$, respectively. As a result, the reactions promoted by (S)-3b afforded higher ee values (93-96\% ee) than those by (S)-3a (85-93\% ee) in all cases (Table 1, entries 1-6). When
$\mathrm{n}>1$, the difference in enantioselectivity is much larger. In most cases, the yields are also higher (entries 2-6). Besides n-alkyl aldehyde 2a, the bulkier sec-alkyl aldehydes could also be applied. The reactions using (S)-3b also gave chiral allenols in higher yields and ees than those using (S)-3a (entries 7-9).

Among the three reactants of the allenylation reaction, terminal alkynols $\mathbf{1}$ are usually not commercially available, and should be generally considered as the limiting reagent. Thus, the reaction was further optimized for this purpose. At first, we attempted the reaction with the ratio of
$\mathbf{1 c} / \mathbf{2 a} /(S)$ - $\mathbf{3 b}$ being $1: 1.5: 1.1$. As a result, the yield of $(R)-\mathbf{4 c a}$ was 51% and the ee-value was 94% (Table 2, entry 2), both of which were slightly lower than that of reactions using $\mathbf{1 c} / \mathbf{2 a} /(S)-\mathbf{3 b}$ (ratio: 1.5:1.5:1) (entry1). On the basis of the results, the effect of the loading of 2a was screened (entries $2-5)$: When the ratio of $\mathbf{1 \mathbf { c }} / \mathbf{2 a} /(S)-\mathbf{3 b}$ was 1:1.4:1.1, (R)-4ca was obtained in 46% yield with the highest ee of 95% (entry 3). Increasing the loading of (S)-3b to 1.2 equivalents led to an improved yield of 49% with the same ee (entry 6). Thus, the best conditions for this reaction could also be defined as $\mathbf{1}$ (1.0 equiv) and $\mathbf{2}$ (1.4 equiv) reacted with (S)-3b (1.2

Table 1 Allenylation of Different Terminal Alkynols $\mathbf{1}$ with Aliphatic Aldehydes 2: (S) - $\mathbf{3 a}$ vs (S) - $\mathbf{3 b}^{\text {a }}$

			$\begin{aligned} & \mathrm{R}^{1} \mathrm{CHO}+ \\ & 2 \\ & 1.5 \text { equiv } \end{aligned}$	Cu 1,4-dio 3 $\begin{aligned} & \mathrm{R}=\mathrm{Ph},(S)-3 \mathrm{a} \\ & \mathrm{R}=\mathrm{Me},(S)-3 \mathrm{~b} \end{aligned}$	$12 \mathrm{~h}$	H	
Entry	1	2		(R)-4 from (S)-3a		(R)-4 from (S)-3b	
	n	R		Yield (\%) ${ }^{\text {b }}$	ee (\%)	Yield (\%) ${ }^{\text {b }}$	ee (\%)
1	1 (1a)	$n-\mathrm{C}_{11} \mathrm{H}_{23}(2 \mathrm{a})$		$60^{c}[(R)-4 \mathbf{a a}]$	93°	61 [(R)-4aa]	96
2	2 (1b)	$n-\mathrm{C}_{11} \mathrm{H}_{23}(2 \mathrm{a})$		$49[(R)-\mathbf{4 b} \mathbf{a}]$	86	$51[(R)-4 \mathbf{b a}]$	95
3	3 (1c)	$n-\mathrm{C}_{11} \mathrm{H}_{23}(2 \mathrm{a})$		56 [(R)-4ca]	85	$53[(R)-4 \mathbf{c a}]$	95
4	4 (1d)	$n-\mathrm{C}_{11} \mathrm{H}_{23}(2 \mathrm{a})$		51 [(R)-4da]	88	57 [(R)-4da]	93
5	5 (1e)	$n-\mathrm{C}_{11} \mathrm{H}_{23}(\mathbf{2 a})$		$46[(R)-4 \mathrm{ea}]$	87	$52[(R)-4 \mathrm{ea}]$	96
6	6 (1f)	$n-\mathrm{C}_{11} \mathrm{H}_{23}(2 \mathrm{a})$		53 [(R)-4fa]	88	50 [(R)-4fa]	95
7	4 (1d)	$\mathrm{Cy}(\mathbf{2 b})$		$45[(R)-\mathbf{4 d b}]$	93	$46[(R)-\mathbf{4 d b}]$	97
8	4 (1d)	$i-\operatorname{Pr}(\mathbf{2 g})$		$40[(R)-\mathbf{4 d g}]$	92	$49[(R)-\mathbf{4 d g}]$	96
9	4 (1d)	$\mathrm{Et}_{2} \mathrm{CH}(\mathbf{2 h})$		$34[(R)-\mathbf{4 d h}]$	94	53 [(R)-4dh]	99

${ }^{\text {a }}$ The reaction was conducted using $\mathbf{1}(1.5 \mathrm{mmol}), \mathbf{2}(1.5 \mathrm{mmol}),(S)-\mathbf{3 a}$ or $(S)-\mathbf{3 b}(1.0 \mathrm{mmol})$, and $\mathrm{CuBr}_{2}(20 \mathrm{~mol} \%)$ in 1,4 -dioxane $(3 \mathrm{~mL})$ at $130{ }^{\circ} \mathrm{C}$ for 12 h .
${ }^{\mathrm{b}}$ Isolated yield.
${ }^{\text {c }}$ Data reported in entry 12 of Table 2 in Ref. 9a.

Table 2 Reaction of 2a with Pent-4-yn-1-ol (1c) as the Limiting Reagent ${ }^{\text {a }}$

[^0]equiv) catalyzed by CuBr_{2} ($20 \mathrm{~mol} \%$) at $130{ }^{\circ} \mathrm{C}$ in 1,4 -dioxane when terminal alkynols were considered as the limiting reagent.

With the optimized conditions in hand, the reaction was then carried out on a gram scale. The allenol (R)-4da was obtained smoothly in 55% yield with 97% ee (Scheme 2).

The reactions of aromatic aldehydes were also tested. Pent-4-yn-1-ol (1c; 2 equiv) reacted with benzaldehyde ($\mathbf{2 c}$; 1.5 equiv) under CuBr_{2} ($50 \mathrm{~mol} \%$) in the presence of $(S)-\mathbf{3 a}$ at $70{ }^{\circ} \mathrm{C}$ in 1,4 -dixoane to give (R)-4cc in 45% yield with 95% ee. Under the same conditions, (S)-3b-promoted reaction afforded (R)-4cc in 37% yield with 98% ee (Table 3, entry 1). For 4-bromobenzaldehyde (2d), (S)-3b-promoted reaction gave better ee than (S)-3a. However, the yield was lower (entry 2). When 4-methylbenzaldehyde (2e) was applied under the same conditions, better yield and ee were obtained in the presence of (S)-3b. Nevertheless, the
enantioselectivity for (R)-4ce was 90%, which was not satisfactory (entry 3). Gladly, the reaction using $\mathbf{1 c} / \mathbf{2 e} /(S)-\mathbf{3 b}$ (ratio 1:1.4:1.4) gave a better result, affording (R)-4ce with 93% ee albeit in a yield of 41% (entry 4). For 4-nitrobenzaldehyde (2f), the reaction using (S) - $\mathbf{3 b}$ afforded (R)-4cf with a slightly better $e e$, but a lower yield than that using (S)-3a (entry 5). The reaction of o-chlorobenzaldehyde ($\mathbf{2 i}$) using (S) - $\mathbf{3 a}$ and (S) - $\mathbf{3 b}$ afforded the corresponding allenol (R)-4ci in 6% and 12% NMR yield, respectively (Scheme 3).

Several transformations were conducted to illustrate the synthetic potentials of these optically active allenols. Aerobic oxidation of (R)-4ca afforded chiral allenal (R)-5 with the same ee under the catalysis of $20 \mathrm{~mol} \%$ each of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right) \cdot 9 \mathrm{H}_{2} \mathrm{O}$, TEMPO, and NaCl in DCE (Scheme 4A). ${ }^{13}$ Allenol (R)-4da could undergo a Mitsunobu reaction ${ }^{14}$ to afford chiral allenyl amide $(R)-6$ without any racemization (Scheme 4B).

Table 3 Some Typical Examples with Aromatic Aldehydesa

Entry	2	(R)-4 from (S)-3a			(R)-4 from (S)-3b		
	Ar	Time (h)	Yield (\%) ${ }^{\text {b }}$	ee (\%)	Time (h)	Yield (\%) ${ }^{\text {b }}$	ee (\%)
1	Ph (2c)	46.5	$45[(R)-4 \mathrm{cc}]$	95	46.5	37 [(R)-4cc]	98
2	4- $\mathrm{BrC}_{6} \mathrm{H}_{4}(\mathbf{2 d})$	44.5	51 [(R)-4cd]	90	45.5	$41[(R)-4 \mathbf{c d}]$	94
3	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathbf{2 e})$	46.5	$49[(R)-4 \mathbf{c e}]$	76	47.5	$56[(R)-4 \mathbf{c e}]$	90
$4^{\text {c }}$	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathbf{2 e})$	-	-	-	42	$41[(R)-4 \mathbf{c e}]$	93
5	4- $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}(\mathbf{2 f})$	43	47 [(R)-4cf]	95	43	$39[(R)-4 \mathbf{c f}]$	96

${ }^{\text {a }}$ The reaction was conducted using $\mathbf{1 c}(2 \mathrm{mmol}), \mathbf{2}(1.5 \mathrm{mmol}),(S)-\mathbf{3 a}$ or $(S)-\mathbf{3 b}(1 \mathrm{mmol})$, and $\mathrm{CuBr}_{2}(50 \mathrm{~mol} \%)$ in 1,4 -dioxane (3 mL) at $70{ }^{\circ} \mathrm{C}$.
${ }^{\mathrm{b}}$ Isolated yield.
${ }^{\text {c }}$ The reaction was conducted using $\mathbf{1 c}(1 \mathrm{mmol}), \mathbf{2 e}(1.4 \mathrm{mmol}),(\mathrm{S})-\mathbf{3 b}(1.4 \mathrm{mmol})$, and $\mathrm{CuBr}_{2}(50 \mathrm{~mol} \%)$ in $1,4-$ dioxane $(3 \mathrm{~mL})$ at $70^{\circ} \mathrm{C}$.

Scheme 2 Gram-scale synthesis of allenol (R)-4da

Scheme 3 Reaction of o-chlorobenzaldehyde with pent-4-yn-1-ol

Finally, we applied this chemistry to the convenient synthesis of naturally occurring phlomic acid (R)-9. $\mathbf{.}^{10,15}$ Starting from (R)-4da, iodide (R)-7 was obtained by the treatment of PPh_{3}, imidazole, and $\mathrm{I}_{2} \cdot{ }^{16}$ Then, the diester (R) 8 was formed in 61% yield with 96% ee by alkylation with diethyl malonate in the presence of NaH as the base. By the treatment with aqueous NaOH in MeOH , followed by heating in AcOH at $120^{\circ} \mathrm{C}$, natural product phlomic acid $[(R)-9]$ was obtained in 78% yield and 95% ee (Scheme 4C).

As proposed in our previous work, ${ }^{9 a}$ the reaction between the in situ generated alkynylmetal species $\mathbf{I N}$ - $\mathbf{1}$ and the iminium ion 11 via 1,2-attack of the alkynyl entity from the back-side of the dimethylhydroxymethyl or diphenylhydroxymethyl group would generate propargylic amine $(S, S)-12$, which undergoes highly stereoselective CuBr_{2}-mediated intramolecular 1,5-hydride transfer followed by anti-β-elimination to deliver the R-allene unit. The reaction using (S)-dimethylprolinol may afford optically active propargylic amine (S, S) - $\mathbf{1 2}$ with higher de, resulting in higher ee for 1,3-disubstituted allenols (Scheme 5).

In conclusion, we have developed a general allenylation of terminal alkynols with aliphatic or aromatic aldehydes using (S)- α, α-dimethylprolinol instead of (S)- α, α-diphenylprolinol, affording a series of optically active 1,3-disubstituted allenols with high enantioselectivity in one-pot. The synthetic potentials of these allenols prepared have also been demonstrated by oxidation to aldehyde and conver-
sion to amide, as well as a different approach for the naturally occurring phlomic acid.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker AM 300 MHz spectrometer. IR spectra were recorded on a PerkinElmer 983G instrument. Elemental analyses were measured with a Carlo-Erba EA1110 elementary analysis instrument. Mass spectrometry was performed with an HP 5989A system. High-resolution mass spectrometry was taken with a Finnigan MAT 8430 or Bruker APEXIII instrument. CuBr_{2} was purchased from J \& K. 1,4-Dioxane was distilled from Na using benzophenone as indicator under N_{2} before use. $\mathrm{Et}_{2} \mathrm{O}$ and THF were distilled from Na wire using benzophenone as indicator under N_{2} before use. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DMF were distilled from CaH_{2} under N_{2} before use. Petroleum ether (PE) used had a boiling range of $60-90^{\circ} \mathrm{C}$. All liquid aldehydes were freshly distilled before use. Unless otherwise indicated, chemicals and solvents were purchased from commercial suppliers.
(S)- α, α-Dimethylprolinol ${ }^{17}$ and oct-7-yn-1-ol (1f) ${ }^{12}$ were prepared following the literature methods.

Synthesis of Optically Active 1,3-Disubstuted Allenols via Enantioselective Allenylation of Terminal Alkyne (EATA) Reaction Using (S)- α, α-Diphenylprolinol and (S)- α, α-Dimethylprolinol

Synthesis of (R)-Pentadeca-2,3-dien-1-ol [(R)-4aa] Using (S)-3b; Typical Procedure I
To a flame-dried Schlenk tube with a polytetrafluoroethylene plug were added $\mathrm{CuBr}_{2}(0.0453 \mathrm{~g}, 0.2 \mathrm{mmol})$, (S)-3b ($0.1299 \mathrm{~g}, 1.0 \mathrm{mmol}$), prop-2-yn-1-ol (1a; $0.0846 \mathrm{~g}, 1.5 \mathrm{mmol}$, dissolved in 1.5 mL of $1,4-$ dioxane), and dodecanal (2a; $0.2762 \mathrm{~g}, 1.5 \mathrm{mmol}$, dissolved in 1.5 mL

Synthesis
D. Ma et al.

Scheme 5 Proposed mechanism
of 1,4-dioxane) sequentially under N_{2}. The Schlenk tube was then sealed by screwing the polytetrafluoroethylene plug tightly with the outlet being closed. Then the reaction mixture was heated in an oil bath preheated at $130{ }^{\circ} \mathrm{C}$ with stirring. After 12 h , the reaction was complete as monitored by TLC and the mixture was cooled to r.t. Afterwards, the resulting mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with aq $\mathrm{HCl}(3 \mathrm{M}, 20 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL) and dried (anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$). After filtration and evaporation, the residue was purified by chromatography on silica gel (PE/EtOAc $8: 1,720 \mathrm{~mL}$) to afford (R)4aa; ${ }^{\text {ad }}$ yield: 0.1372 g (61\%); pale yellow liquid; $[\alpha]_{D}{ }^{20}$-50.6 (c 1.025, $\left.\mathrm{CHCl}_{3}\right)\left\{\right.$ Lit. $^{9 \mathrm{a}} 93 \%$ ee; $\left.[\alpha]_{\mathrm{D}}{ }^{25.9}-52.1\left(c 0.99, \mathrm{CHCl}_{3}\right)\right\}$.
HPLC: Chiralcel AS-H column, n-hexane $/ i-\mathrm{PrOH}(200: 1), 1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=19.6 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=21.3 \mathrm{~min} ; 96 \% e e$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.38-5.24(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}), 4.16-4.07$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), 2.09-1.96 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.54-1.19 (m, $19 \mathrm{H}, 9 \times \mathrm{CH}_{2}+\mathrm{OH}$), $0.88\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.9,94.1,91.7,60.8,31.9,29.65$, 29.62, 29.4, 29.3, 29.12, 29.07, 28.7, 22.7, 14.1.

Synthesis of (R)-Hexadeca-3,4-dien-1-ol [(R)-4ba]

Using (S)-3a: Following the Typical Procedure I, the reaction of but-3-yn-1-ol (1b; $0.1048 \mathrm{~g}, 1.5 \mathrm{mmol}$), dodecanal ($\mathbf{2 a} ; 0.2762 \mathrm{~g}, 1.5 \mathrm{mmol}$), (S)-3a ($0.2585 \mathrm{~g}, 1 \mathrm{mmol}$), and $\mathrm{CuBr}_{2}(0.0451 \mathrm{~g}, 0.2 \mathrm{mmol})$ in 1,4 -dioxane (3 mL) at $130^{\circ} \mathrm{C}$ for 12 h afforded $(R)-4 \mathbf{b a}(\mathrm{PE} / \mathrm{EtOAc} 8: 1,450$ mL) was used for the first round to afford impure $(R)-\mathbf{4 b a}$, which was further purified by chromatography on silica gel (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 200$ mL for the second round); yield: 0.1161 g (49\%); pale yellow liquid; $[\alpha]_{\mathrm{D}}{ }^{20}-44.9$ ($\left.c 1.01, \mathrm{CHCl}_{3}\right)$.
HPLC: Chiralcel IC column, n-hexane $/ i-\operatorname{PrOH}(200: 1), 0.6 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm} ; t_{\mathrm{R}}($ minor $)=23.4 \mathrm{~min}, t_{\mathrm{R}}($ major $)=25.3 \mathrm{~min} ; 86 \% e e$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.20-5.04(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}), 3.70(\mathrm{q}, \mathrm{J}=$ $\left.5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.24\left(\mathrm{qd}, J_{1}=6.3 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.99(\mathrm{qd}$, $\left.J_{1}=7.0 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.46-1.20(\mathrm{~m}, 18$ $\left.\mathrm{H}, 9 \times \mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=204.6,91.7,87.1,62.1,32.3,31.9,29.65$, 29.63, 29.5, 29.3, 29.2, 29.1, 28.9, 22.7, 14.1.

Using (S)-3b: Following the Typical Procedure I, the reaction of but-3-yn-1-ol ($\mathbf{1 b} ; 0.1059 \mathrm{~g}, 1.5 \mathrm{mmol}$), dodecanal (2a; $0.2770 \mathrm{~g}, 1.5 \mathrm{mmol}$), $(S)-\mathbf{3 b}(0.1298 \mathrm{~g}, 1 \mathrm{mmol})$, and $\mathrm{CuBr}_{2}(0.0451 \mathrm{~g}, 0.2 \mathrm{mmol})$ in $1,4-\mathrm{di}-$ oxane (3 mL) at $130{ }^{\circ} \mathrm{C}$ for 12 h afforded (R)-4ba (PE/EtOAc 8:1, 900 mL); yield: $0.1227 \mathrm{~g}(51 \%)$; pale yellow liquid; $[\alpha]_{\mathrm{D}}{ }^{20}-51.3$ (c 0.970, CHCl_{3}).
HPLC: Chiralcel IC column, n-hexane $/ i-\operatorname{PrOH}(200: 1), 0.6 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm} ; t_{\mathrm{R}}$ (minor) $=22.9 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=25.1 \mathrm{~min} ; 95 \%$ ee.
IR (neat): 3334, 2954, 2923, 2853, 1963, 1466, 1378, 1341, 1286, $1178,1050 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.20-5.02(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}), 3.69(\mathrm{t}, \mathrm{J}=$ $\left.6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.24\left(\mathrm{qd}, J_{1}=6.4 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.99(\mathrm{qd}$, $\left.J_{1}=6.9 \mathrm{~Hz}, J_{2}=3.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.47-1.14(\mathrm{~m}, 18$ $\left.\mathrm{H}, 9 \times \mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=204.6,91.6,87.1,62.0,32.3,31.9,29.63$, 29.60, 29.4, 29.3, 29.2, 29.1, 28.8, 22.6, 14.1.

MS (70 eV, EI): $m / z(\%)=238\left(\mathrm{M}^{+}, 1.87\right), 68(100)$.
HRMS: m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 238.2297; found: 238.2294 .

Synthesis of (R)-Heptadeca-4,5-dien-1-ol [(R)-4ca]

Using (S)-3a: Following the Typical Procedure I, the reaction of pent-4-yn-1-ol (1c; $0.1307 \mathrm{~g}, 1.5 \mathrm{mmol}$), dodecanal (2a; $0.2769 \mathrm{~g}, 1.5$ mmol), (S)-3a ($0.2589 \mathrm{~g}, 1 \mathrm{mmol}$), and $\mathrm{CuBr}_{2}(0.0449 \mathrm{~g}, 0.2 \mathrm{mmol})$ in 1,4-dioxane (3 mL) at $130{ }^{\circ} \mathrm{C}$ for 12 h afforded $(R)-4 \mathbf{c a}(\mathrm{PE} / E t O A c 8: 1$, 450 mL) for the first round to afford impure (R)-4ca, which was fur-
ther purified by chromatography on silica gel (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 200 \mathrm{~mL}$ for the second round); yield: $0.1405 \mathrm{~g}(56 \%)$; colorless liquid; $[\alpha]_{D}{ }^{20}$ -44.1 ($\mathbf{c} 1.04, \mathrm{CHCl}_{3}$).
HPLC: Chiralcel IC column, n-hexane $/ i-\operatorname{PrOH}(400: 1), 0.6 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm} ; t_{\mathrm{R}}$ (minor) $=35.9 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=37.9 \mathrm{~min} ; 85 \% ~ e e$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.15-5.05(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}), 3.69(\mathrm{t}, \mathrm{J}=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), 2.11-2.02 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.02-1.90 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), $1.75-1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.48-1.21\left(\mathrm{~m}, 19 \mathrm{H}, 9 \times \mathrm{CH}_{2}+\mathrm{OH}\right), 0.88(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.8,91.5,90.1,62.4,31.95,31.91$, 29.7, 29.6, 29.5, 29.3, 29.2, 29.1, 28.9, 25.2, 22.7, 14.1.

Using (S)-3b: Following the Typical Procedure I, the reaction of pent4 -yn-1-ol (1c; $0.1306 \mathrm{~g}, 1.5 \mathrm{mmol}$), dodecanal (2a; $0.2774 \mathrm{~g}, 1.5$ $\mathrm{mmol}),(S)-\mathbf{3 b}(0.1298 \mathrm{~g}, 1 \mathrm{mmol})$, and $\mathrm{CuBr}_{2}(0.0449 \mathrm{~g}, 0.2 \mathrm{mmol})$ in 1,4-dioxane (3 mL) at $130^{\circ} \mathrm{C}$ for 12 h afforded (R)-4ca (PE/EtOAc 8:1, 900 mL); yield: $0.1345 \mathrm{~g}(53 \%)$; yellow liquid; $[\alpha]_{\mathrm{D}}{ }^{20}-50.0(c 0.975$, CHCl_{3}).
HPLC: Chiralcel IC column, n-hexane $/ i$ - $\operatorname{PrOH}(400: 1), 0.6 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm} ; t_{\mathrm{R}}$ (minor) $=39.5 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=42.2 \mathrm{~min} ; 95 \%$ ee.
IR (neat): $3333,2923,2853,1962,1466,1378,1350,1293,1167,1058$ cm^{-1}.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.16-5.05(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}), 3.68(\mathrm{t}, \mathrm{J}=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), 2.13-1.90 (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), 1.77-1.55 (m, 3 H , $\left.\mathrm{CH}_{2}+\mathrm{OH}\right), 1.45-1.18\left(\mathrm{~m}, 18 \mathrm{H}, 9 \times \mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.9,91.5,90.1,62.4,32.0,31.9,29.7$, 29.6, 29.5, 29.3, 29.2, 29.1, 28.9, 25.2, 22.7, 14.1.

MS ($70 \mathrm{eV}, \mathrm{EI}$): $m / z(\%)=253\left[\left(\mathrm{M}^{+}+1\right)^{+}, 3.87\right], 252\left(\mathrm{M}^{+}, 1.22\right), 79(100)$. HRMS: m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 174.1045 ; found: 174.1051 .

Synthesis of (R)-Octadeca-5,6-dien-1-ol [(\boldsymbol{R})-4da]

Using (S)-3a: Following the Typical Procedure I, the reaction of hex-5-yn-1-ol (1d; $0.1512 \mathrm{~g}, 1.5 \mathrm{mmol})$, dodecanal (2a; $0.2772 \mathrm{~g}, 1.5 \mathrm{mmol}$), (S)-3a ($0.2589 \mathrm{~g}, 1 \mathrm{mmol}$), and $\mathrm{CuBr}_{2}(0.0449 \mathrm{~g}, 0.2 \mathrm{mmol})$ in 1,4 -dioxane (3 mL) at $130{ }^{\circ} \mathrm{C}$ for 12 h afforded (R)-4da (PE/EtOAc 8:1, 810 $\mathrm{mL})$; yield: $0.1363 \mathrm{~g}(51 \%)$; yellow liquid; $[\alpha]_{\mathrm{D}}{ }^{20}-41.4\left(c 1.105, \mathrm{CHCl}_{3}\right)$. HPLC: Chiralcel PA-2 column, n-hexane $/ i-\mathrm{PrOH}(200: 1), 1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=14.3 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $=15.9 \mathrm{~min} ; 88 \% \mathrm{ee}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.12-5.01(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}), 3.65(\mathrm{t}, \mathrm{J}=$ $\left.6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.08-1.91\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.68-1.56(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 1.56-1.19 (m, $\left.21 \mathrm{H}, 10 \times \mathrm{CH}_{2}+\mathrm{OH}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.8,91.2,90.5,62.8,32.2,31.9,29.7$, 29.6, 29.5, 29.3, 29.2, 29.1, 29.0, 28.7, 25.3, 22.7, 14.1.

Using (S)-3b: Following the Typical Procedure I, the reaction of hex-5-yn-1-ol (1d; $0.1516 \mathrm{~g}, 1.5 \mathrm{mmol}$), dodecanal ($\mathbf{2 a} ; 0.2774 \mathrm{~g}, 1.5 \mathrm{mmol}$), $(S)-\mathbf{3 b}(0.1290 \mathrm{~g}, 1 \mathrm{mmol})$, and $\mathrm{CuBr}_{2}(0.0452 \mathrm{~g}, 0.2 \mathrm{mmol})$ in 1,4 -dioxane (3 mL) at $130{ }^{\circ} \mathrm{C}$ for 12 h afforded (R)-4da (PE/EtOAc 8:1, 450 $\mathrm{mL})$; yield: $0.1508 \mathrm{~g}(57 \%)$; yellow liquid; $[\alpha]_{\mathrm{D}}{ }^{20}-47.0\left(c 1.055, \mathrm{CHCl}_{3}\right)$. HPLC: Chiralcel PA-2 column, n-hexane $/ i$ - PrOH (200:1), $1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=14.3 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=15.9 \mathrm{~min} ; 93 \%$ ee.
IR (neat): 3334, 2924, 2853, 1962, 1465, 1378, 1341, 1295, 1159, 1061 cm^{-1}.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.12-5.01(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}), 3.65(\mathrm{t}, \mathrm{J}=$ $\left.6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.08-1.91\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.71-1.56(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.56-1.19\left(\mathrm{~m}, 21 \mathrm{H}, 10 \times \mathrm{CH}_{2}+\mathrm{OH}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.8,91.2,90.5,62.8,32.2,31.9,29.7$, 29.6, 29.5, 29.3, 29.2, 29.1, 29.0, 28.7, 25.3, 22.7, 14.1.

MS ($70 \mathrm{eV}, \mathrm{EI}$): $m / z(\%)=267\left[(\mathrm{M}+1)^{+}, 3.25\right], 266\left(\mathrm{M}^{+}, 1.94\right), 82(100)$.

HRMS: m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 266.2610 ; found: 266.2613 .

Synthesis of (\boldsymbol{R})-4da Using (\boldsymbol{S})-3b on a Gram-Scale

To a flame-dried Schlenk tube with a polytetrafluoroethylene plug were added $\mathrm{CuBr}_{2}(0.4476 \mathrm{~g}, 2.0 \mathrm{mmol})$), (S)-3b ($1.6336 \mathrm{~g}, 95 \%$ purity, 12 mmol), hex-5-yn-1-ol (1d; $1.0125 \mathrm{~g}, 97 \%$ purity, 10 mmol , dissolved in 15 mL of 1,4 -dioxane), and dodecanal (2a; $2.7202 \mathrm{~g}, 95 \%$ purity, 14 mmol , dissolved in 15 mL of 1,4-dioxane) sequentially under N_{2}. The Schlenk tube was then sealed by screwing the polytetrafluoroethylene plug tightly with the outlet being closed. Then the reaction mixture was heated in an oil bath preheated at $130^{\circ} \mathrm{C}$ with stirring. After 12 h , the reaction was complete as monitored by TLC. The mixture was cooled to r.t., diluted with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$, and washed with $\mathrm{aq} \mathrm{HCl}(3 \mathrm{M}, 150 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine (200 mL) and dried (anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$). After filtration and evaporation, the residue was purified by chromatography on silica gel (PE/EtOAc 10:1, 1000 mL) to afford (R)4da; yield: $1.4561 \mathrm{~g}(55 \%)$; colorless liquid; $[\alpha]_{D}{ }^{20}-47.1$ (c 1.065, CHCl_{3}.
HPLC: Chiralcel PA-2 column, n-hexane $/ i-\operatorname{PrOH}(200: 1), 1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=19.9 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $=23.0 \mathrm{~min} ; 97 \% ~ e e$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.12-5.01(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}), 3.64(\mathrm{t}, \mathrm{J}=$ $6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), 2.07-1.90 (m, $5 \mathrm{H}, 2 \times \mathrm{CH}_{2}+\mathrm{OH}$), 1.69-1.54 (m, 2 $\left.\mathrm{H}, \mathrm{CH}_{2}\right), 1.54-1.18\left(\mathrm{~m}, 20 \mathrm{H}, 10 \times \mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.8,91.1,90.4,62.7,32.1,31.9,29.6$, 29.5, 29.3, 29.2, 29.1, 28.9, 28.6, 25.2, 22.6, 14.1.

Synthesis of (R)-Nonadeca-6,7-dien-1-ol [(R)-4ea]

Using (S)-3a: Following the Typical Procedure I, the reaction of hept6 -yn-1-ol ($\mathbf{1 e} ; 0.1730 \mathrm{~g}, 1.5 \mathrm{mmol}$), dodecanal ($\mathbf{2 a} ; 0.2763 \mathrm{~g}, 1.5$ $\mathrm{mmol}),(S)-3 \mathbf{a}(0.2587 \mathrm{~g}, 1 \mathrm{mmol})$, and $\mathrm{CuBr}_{2}(0.0452 \mathrm{~g}, 0.2 \mathrm{mmol})$ in 1,4-dioxane (3 mL) at $130^{\circ} \mathrm{C}$ for 12 h afforded (R)-4ea (PE/EtOAc 8:1, 450 mL for the first round; $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 200 \mathrm{~mL}$ for the second round); yield: $0.1303 \mathrm{~g}(46 \%)$; colorless solid with a very low $\mathrm{mp}\left(0-20^{\circ} \mathrm{C}\right)$; $[\alpha]_{D}{ }^{20}-39.0\left(c 1.065, \mathrm{CHCl}_{3}\right)$.
HPLC: Chiralcel PA-2 column, n-hexane $/ i-\operatorname{PrOH}(200: 1), 1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=16.7 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $=18.6 \mathrm{~min} ; 87 \%$ ee.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.11-5.00(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}), 3.63(\mathrm{t}, \mathrm{J}=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), 2.06-1.89 (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), 1.71 (br s, $1 \mathrm{H}, \mathrm{OH}$), $1.62-1.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.50-1.17\left(\mathrm{~m}, 22 \mathrm{H}, 11 \times \mathrm{CH}_{2}\right), 0.88(\mathrm{t}, \mathrm{J}=6.6$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.8,91.0,90.6,62.9,32.6,31.9,29.6$, 29.5, 29.3, 29.2, 29.1, 29.0, 28.91, 28.89, 25.2, 22.7, 14.1.

Using (S)-3b: Following the Typical Procedure I, the reaction of hept-6-yn-1-ol ($\mathbf{1 e}$; $0.1739 \mathrm{~g}, 1.5 \mathrm{mmol}$), dodecanal ($\mathbf{2 a} ; 0.2771 \mathrm{~g}, 1.5$ $\mathrm{mmol}),(S)-3 \mathrm{~b}(0.1284 \mathrm{~g}, 1 \mathrm{mmol})$, and $\mathrm{CuBr}_{2}(0.0451 \mathrm{~g}, 0.2 \mathrm{mmol})$ in 1,4-dioxane (3 mL) at $130^{\circ} \mathrm{C}$ for 12 h afforded (R)-4ea (PE/EtOAc $8: 1$, 610 mL for the first round; $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 200 \mathrm{~mL}$ for the second round); yield: $0.1447 \mathrm{~g}(52 \%)$; colorless solid with a very low $\mathrm{mp}\left(0-20^{\circ} \mathrm{C}\right)$; $[\alpha]_{D}{ }^{20}-43.4\left(c 1.110, \mathrm{CHCl}_{3}\right)$.
HPLC: Chiralcel PA-2 column, n-hexane $/ i-\mathrm{PrOH}(200: 1), 1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=17.4 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=19.0 \mathrm{~min} ; 96 \% ~ e e$.
IR (neat): 3346, 2922, 1961, 1463, 1378, 1350, 1292, 1152, 1072, 1053 cm^{-1}.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.11-5.00(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}), 3.63(\mathrm{t}, J=$ $\left.6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.06-1.89\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.79-1.51\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right.$ $+\mathrm{OH}), 1.49-1.17\left(\mathrm{~m}, 22 \mathrm{H}, 11 \times \mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.8,91.0,90.6,62.9,32.6,31.9,29.6$, 29.5, 29.3, 29.2, 29.1, 29.0, 28.91, 28.89, 25.2, 22.7, 14.1.

MS (70 eV, EI): $m / z(\%)=281\left[(M+1)^{+}, 1.80\right], 280\left(\mathrm{M}^{+}, 1.62\right), 93$ (100). HRMS: m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}\left(\mathrm{M}^{+}\right): 280.2766$, found: 280.2762 .

Synthesis of (R)-Icosa-7,8-dien-1-ol [(R)-4fa]

Using (S)-3a: Following the Typical Procedure I, the reaction of oct-7-yn-1-ol (1f; ${ }^{12} 0.1893 \mathrm{~g}, 1.5 \mathrm{mmol}$), dodecanal (2a; $0.2760 \mathrm{~g}, 1.5$ mmol), (S)-3a ($0.2583 \mathrm{~g}, 1 \mathrm{mmol}$), and $\mathrm{CuBr}_{2}(0.0450 \mathrm{~g}, 0.2 \mathrm{mmol})$ in 1,4-dioxane (3 mL) at $130{ }^{\circ} \mathrm{C}$ for 12 h afforded (R)-4fa (PE/EtOAc 8:1, 450 mL for the first round; $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 200 \mathrm{~mL}$ for the second round); yield: ($0.1558 \mathrm{~g}, 53 \%$); colorless solid with a very low $\mathrm{mp}\left(0-20^{\circ} \mathrm{C}\right)$; $[\alpha]_{\mathrm{D}}{ }^{20}-36.2\left(c 1.205, \mathrm{CHCl}_{3}\right)$.
HPLC: Chiralcel PA-2 column, n-hexane $/ i-\mathrm{PrOH}(200: 1), 0.7 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=28.5 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=30.4 \mathrm{~min} ; 88 \% \mathrm{ee}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.10-5.00(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH} \times 2), 3.64(\mathrm{t}$, $\left.J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.04-1.90\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.64-1.50(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.48-1.21\left(\mathrm{~m}, 25 \mathrm{H}, 12 \times \mathrm{CH}_{2}+\mathrm{OH}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=203.8,91.0,90.7,63.0,32.7,31.9,29.7$, 29.6, 29.5, 29.3, 29.2, 29.1, 29.0, 28.9, 28.8, 25.6, 22.7, 14.1 .

Using (S)-3b: Following the Typical Procedure I, the reaction of oct-7-yn-1-ol (1f; ${ }^{12} 0.1894 \mathrm{~g}, 1.5 \mathrm{mmol}$), dodecanal (2a; $0.2769 \mathrm{~g}, 1.5$ $\mathrm{mmol}),(S)-3 \mathbf{b}(0.1290 \mathrm{~g}, 1 \mathrm{mmol})$, and $\mathrm{CuBr}_{2}(0.0450 \mathrm{~g}, 0.2 \mathrm{mmol})$ in 1,4-dioxane (3 mL) at $130{ }^{\circ} \mathrm{C}$ for 12 h afforded (R)-4fa (PE/EtOAc 8:1, 450 mL for the first round; $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 200 \mathrm{~mL}$ for the second round); yield: $0.1473 \mathrm{~g}(50 \%)$; colorless solid with a very low $\mathrm{mp}\left(0-20^{\circ} \mathrm{C}\right)$; $[\alpha]_{D}{ }^{20}-39.3\left(c 1.000, \mathrm{CHCl}_{3}\right)$.
HPLC: Chiralcel PA-2 column, n-hexane $/ i-\operatorname{PrOH}(200: 1), 0.7 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=22.1 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=24.7 \mathrm{~min} ; 95 \% e e$.
IR (neat): 3334, 2925, 2854, 1962, 1464, 1377, $1056 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.10-5.00(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}), 3.64(\mathrm{t}, \mathrm{J}=$ $\left.6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.04-1.90\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.64-1.50(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.48-1.17\left(\mathrm{~m}, 25 \mathrm{H}, 12 \times \mathrm{CH}_{2}+\mathrm{OH}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.9,91.0,90.7,63.0,32.8,31.9,29.67$, 29.66, 29.5, 29.3, 29.2, 29.15, 29.13, 29.0, 28.92, 28.87, 25.6, 22.7, 14.1.

MS (70 eV, EI): $m / z(\%)=294\left(\mathrm{M}^{+}, 5.54\right), 81(100)$.
HRMS: m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 294.2923; found: 294.2922.

Synthesis of (R)-7-Cyclohexylhepta-5,6-dien-1-ol [(R)-4db]

Using (S)-3a: Following the Typical Procedure I, the reaction of hex-5-yn-1-ol (1d; $0.1534 \mathrm{~g}, 96 \%$ purity, 1.5 mmol), cyclohexanecarbaldehyde (2b; $0.1692 \mathrm{~g}, 1.5 \mathrm{mmol})$, (S)-3a ($0.2585 \mathrm{~g}, 1 \mathrm{mmol}$), and CuBr_{2} ($0.0451 \mathrm{~g}, 0.2 \mathrm{mmol}$) in 1,4-dioxane (3 mL) at $130^{\circ} \mathrm{C}$ for 12 h afforded $(R)-\mathbf{4 d b}$ (PE/EtOAc 20:1, 300 mL to $10: 1,300 \mathrm{~mL}$); yield: 0.0870 g (45\%); yellow liquid; $[\alpha]_{\mathrm{D}}{ }^{20}-81.2\left(c 0.96, \mathrm{CHCl}_{3}\right)$.
HPLC: Chiralcel PA-2 column, n-hexane $/ i-\mathrm{PrOH}(200: 1), 0.6 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=30.8 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $=32.4 \mathrm{~min} ; 93 \% e e$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.16-5.04(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}$), $3.66(\mathrm{t}, \mathrm{J}=$ $\left.6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.11-1.87\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}+\mathrm{CH}\right), 1.82-1.56(\mathrm{~m}, 7 \mathrm{H}$, $3 \times \mathrm{CH}_{2}+1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.55-1.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.37-0.98(\mathrm{~m}, 6 \mathrm{H}$, $2 \times \mathrm{CH}_{2}+1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}+\mathrm{OH}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.6,97.2,91.4,62.6,37.2,33.1,33.0$, 32.1, 28.7, 26.1, 26.0, 25.3.

Using (S)-3b: Following the Typical Procedure I, the reaction of hex-5-yn-1-ol (1d; $0.1523 \mathrm{~g}, 1.5 \mathrm{mmol}$), cyclohexanecarbaldehyde ($\mathbf{2 b}$; $0.1685 \mathrm{~g}, 1.5 \mathrm{mmol}),(S)-\mathbf{3 b}(0.1289 \mathrm{~g}, 1 \mathrm{mmol})$, and $\mathrm{CuBr}_{2}(0.0452 \mathrm{~g}$,
0.2 mmol) in 1,4 -dioxane (3 mL) at $130{ }^{\circ} \mathrm{C}$ for 12 h afforded (R)-4db (PE/EtOAc 8:1, 720 mL for the first round; $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 200 \mathrm{~mL}$ for the second round); yield: 0.0900 g (46\%); yellow liquid; $[\alpha]_{\mathrm{D}}{ }^{20}-87.6$ (c 1.045, CHCl_{3}).
HPLC: Chiralcel AD-H column, n-hexane $/ i-\operatorname{PrOH}(200: 1), 0.7 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=36.4 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $=39.1 \mathrm{~min} ; 97 \% \mathrm{ee}$.
IR (neat): 3334, 2923, 2851, 2658, 1960, 1448, 1361, 1347, 1303, $1258,1229,1213,1159,1058 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.17-5.00(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}), 3.64(\mathrm{t}, \mathrm{J}=$ $\left.6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.09-1.87\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}+\mathrm{CH}\right), 1.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 1.79-1.55 (m, $7 \mathrm{H}, 3 \times \mathrm{CH}_{2}+1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right), 1.53-1.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.36-0.98 (m, $5 \mathrm{H}, 2 \times \mathrm{CH}_{2}+1 \mathrm{H}$ from $\left.\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.6,97.2,91.4,62.7,37.2,33.11$, 33.05, 32.2, 28.8, 26.1, 26.0, 25.3.

MS (70 eV, EI): $m / z(\%)=195\left[(\mathrm{M}+1)^{+}, 1.63\right], 194\left(\mathrm{M}^{+}, 2.17\right), 79(100)$. HRMS: m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 194.1671; found: 194.1669.

Synthesis of (R)-8-Methylnona-5,6-dien-1-ol [(R)-4dg]

Using (S)-3a: Following the Typical Procedure I, the reaction of hex-5-yn-1-ol (1d; $0.1524 \mathrm{~g}, 1.5 \mathrm{mmol}$), isobutyraldehyde ($\mathbf{2 g}, 0.1090 \mathrm{~g}, 1.5$ mmol), (S)-3a ($0.2582 \mathrm{~g}, 1 \mathrm{mmol}$), and $\mathrm{CuBr}_{2}(0.0451 \mathrm{~g}, 0.2 \mathrm{mmol})$ in 1,4-dioxane (3 mL) at $130^{\circ} \mathrm{C}$ for 12 h afforded (R)-4dg (PE/EtOAc 10:1, 500 mL); yield: $0.0615 \mathrm{~g}(40 \%)$; colorless liquid; $[\alpha]_{\mathrm{D}}{ }^{20}=-63.8(c$ $0.765, \mathrm{CHCl}_{3}$).
HPLC: Chiralcel OJ-H column, n-hexane $/ i-\mathrm{PrOH}(100: 1), 1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}$ (minor) $=11.0 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=11.6 \mathrm{~min} ; 92 \% e e$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.18-5.07(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}$), $3.65(\mathrm{t}, \mathrm{J}=$ $\left.6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.36-2.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.08-1.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.68-1.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.55-1.33\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}+\mathrm{OH}\right), 1.00(\mathrm{~d}, J=6.9$ $\left.\mathrm{Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=202.3,98.7,91.8,62.8,32.2,28.8,27.9$, 25.3, 22.5.

Using (S)-3b: Following the Typical Procedure I, the reaction of hex-5-yn-1-ol (1d; $0.1515 \mathrm{~g}, 1.5 \mathrm{mmol})$, isobutyraldehyde ($\mathbf{2 g} ; 0.1084 \mathrm{~g}, 1.5$ mmol), (S)-3b ($0.1362 \mathrm{~g}, 1 \mathrm{mmol}$), and $\mathrm{CuBr}_{2}(0.0455 \mathrm{~g}, 0.2 \mathrm{mmol})$ in 1,4-dioxane (3 mL) at $130{ }^{\circ} \mathrm{C}$ for 12 h afforded (R)-4dg (PE/EtOAc 10:1, 500 mL); yield: $0.0752 \mathrm{~g}(49 \%)$; colorless liquid; $[\alpha]_{\mathrm{D}}{ }^{20}-65.3$ (c 0.995, CHCl_{3}).
HPLC: Chiralcel OJ-H column, n-hexane $/ i-\operatorname{PrOH}(100: 1), 1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}($ minor $)=12.0 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=12.9 \mathrm{~min} ; 96 \% \mathrm{ee}$.
IR (neat): 3344, 2960, 2925, 2867, 1960, 1458, 1381, 1362, 1298, $1059,1034 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.19-5.07(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}), 3.66(\mathrm{t}, \mathrm{J}=$ $\left.6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.35-2.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.08-1.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.72-1.55 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.55-1.41 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.36 (br s, $1 \mathrm{H}, \mathrm{OH}$), $1.00\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.3,98.7,91.8,62.8,32.2,28.8,27.9$, 25.3, 22.5.

MS (70 eV, EI): $m / z(\%)=155\left[(\mathrm{M}+1)^{+}, 8.3\right], 154\left(\mathrm{M}^{+}, 4.6\right), 81(100)$.
HRMS: m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 154.1358; found:154.1361.

Synthesis of (R)-8-Ethyldeca-5,6-dien-1-ol [(R)-4dh]

Using (S)-3a: Following the Typical Procedure I, the reaction of hex-5-yn-1-ol (1d, $0.1510 \mathrm{~g}, 1.5 \mathrm{mmol}$), 2-ethylbutanal (2h; $0.1509 \mathrm{~g}, 1.5$ mmol), (S)-3a ($0.2586 \mathrm{~g}, 1 \mathrm{mmol}$), and $\mathrm{CuBr}_{2}(0.0454 \mathrm{~g}, 0.2 \mathrm{mmol})$ in

1,4-dioxane (3 mL) at $130^{\circ} \mathrm{C}$ for 12 h afforded (S)-4dh (PE/EtOAc 10:1, 495 mL); yield: $0.0619 \mathrm{~g}(34 \%)$; colorless liquid; $[\alpha]_{\mathrm{D}}{ }^{20}-66.7$ (c 0.780, CHCl_{3}).
HPLC: Chiralcel OJ-H column, n-hexane $/ i-\mathrm{PrOH}(200: 1), 1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}($ minor $)=11.3 \mathrm{~min}, t_{\mathrm{R}}($ major $)=11.9 \mathrm{~min} ; 94 \% e e$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.08\left(\mathrm{qd}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $=\mathrm{CH}), 4.95-4.84(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 3.66\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.11-$ $1.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.92-1.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}+\mathrm{OH}), 1.68-1.18(\mathrm{~m}, 8 \mathrm{H}, 4 \times$ $\left.\mathrm{CH}_{2}\right), 0.894\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.886\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=203.7,94.9,90.4,62.8,42.9,32.2,28.9$, 27.7, 27.5, 25.4, 11.7, 11.5 .

Using (S)-3b: Following the Typical Procedure I, the reaction of hex-5-yn-1-ol (1d; $0.1509 \mathrm{~g}, 1.5 \mathrm{mmol}$), 2-ethylbutanal ($\mathbf{2 h} ; 0.1502 \mathrm{~g}, 1.5$ $\mathrm{mmol}),(S)-3 \mathbf{b}(0.1369 \mathrm{~g}, 1 \mathrm{mmol})$, and $\mathrm{CuBr}_{2}(0.0455 \mathrm{~g}, 0.2 \mathrm{mmol})$ in 1,4-dioxane (3 mL) at $130^{\circ} \mathrm{C}$ for 12 h afforded (S)-4dh (PE/EtOAc 10:1, 495 mL); yield: $0.0980 \mathrm{~g}(53 \%)$; colorless liquid; $[\alpha]_{\mathrm{D}}{ }^{20}-73.6$ (c 0.975, CHCl_{3}).
HPLC: Chiralcel OJ-H column, n-hexane $/ i-\operatorname{PrOH}(200: 1), 1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}($ minor $)=11.4 \mathrm{~min}, t_{\mathrm{R}}($ major $)=12.2 \mathrm{~min} ; 99 \%$ ee.
IR (neat): 3328, 2962, 2933, 2874, 1961, 1456, 1377, 1341, 1283, $1065,1036 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.07\left(\mathrm{qd}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $=\mathrm{CH}), 4.92-4.85(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 3.66\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.07-$ 1.97 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.89-1.74 (m, $2 \mathrm{H}, \mathrm{CH}+\mathrm{OH}$), 1.70-1.20 (m, $8 \mathrm{H}, 4 \times$ $\left.\mathrm{CH}_{2}\right), 0.893\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.886\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.7,94.9,90.4,62.8,42.9,32.2,28.9$, 27.7, 27.5, 25.4, 11.7, 11.5.

MS ($70 \mathrm{eV}, \mathrm{EI}$): $m / z(\%)=183\left[(\mathrm{M}+1)^{+}, 0.4\right], 182\left(\mathrm{M}^{+}, 1.2\right), 93(100)$.
HRMS: m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 182.1671; found: 182.1670 .

Synthesis of (R)-6-Phenylhexa-4,5-dien-1-ol [(R)-4cc]

Synthesis of (R)-4cc Using (S)-3a; Typical Procedure II

To a flame-dried Schlenk tube were added $\mathrm{CuBr}_{2}(0.1135 \mathrm{~g}, 0.5$ mmol), (S)-3a ($0.2589 \mathrm{~g}, 1.0 \mathrm{mmol}$), prop-2-yn-1-ol (1c; $0.1733 \mathrm{~g}, 2$ mmol , dissolved in 1.5 mL of 1,4-dioxane), and benzaldehyde $\mathbf{2 c}$ ($0.1592 \mathrm{~g}, 1.5 \mathrm{mmol}$, dissolved in 1.5 mL of 1,4 -dioxane) sequentially under N_{2}. The resulting mixture was heated in an oil bath preheated at $70{ }^{\circ} \mathrm{C}$ with stirring. After 46.5 h , the reaction was complete as monitored by TLC. The mixture was cooled to r.t., diluted with $\mathrm{Et}_{2} \mathrm{O}$ (30 $\mathrm{mL})$, and washed with aq $\mathrm{HCl}(3 \mathrm{M}, 20 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL) and dried (anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$). After filtration and evaporation, the residue was purified by chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} 100: 1,300 \mathrm{~mL}\right)$ to afford $(R)-4 \mathrm{cc}$; yield: $0.0783 \mathrm{~g}(45 \%)$; pale yellow liquid; $[\alpha]_{\mathrm{D}}{ }^{20}-224.2$ (c $1.035, \mathrm{CHCl}_{3}$).
HPLC: Chiralcel OJ-H column, n-hexane $/ i-\mathrm{PrOH}(80: 1), 0.8 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}($ major $\left.)=60.7 \mathrm{~min}\right), t_{\mathrm{R}}($ minor $)=66.7 \mathrm{~min} ; 95 \% e e$.
IR (neat): 3354, 3082, 3062, 3030, 2937, 2876, 1948, 1597, 1495, 1459, 1264, $1057 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.32-7.23$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{ArH}$), 7.22-7.13 (m, $1 \mathrm{H}, \mathrm{ArH}), 6.18-6.12(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 5.59(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 3.67$ $\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.20\left(\mathrm{qd}, J_{1}=7.1 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.91-1.67 (m, $3 \mathrm{H}, \mathrm{OH}+\mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.1,134.8,128.5,126.7,126.5,95.0$, 94.4, 62.1, 31.8, 24.8.

MS (70 eV, EI): $m / z(\%)=174\left(\mathrm{M}^{+}, 16.58\right), 130(100)$.
HRMS: m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 174.1045; found: 174.1051.

Synthesis of (\boldsymbol{R})-4cc Using (\boldsymbol{S})-3b; Typical Procedure III

To a flame-dried Schlenk tube were added $\mathrm{CuBr}_{2}(0.1132 \mathrm{~g}, 0.5$ mmol), ($(S)-\mathbf{3 b}$ ($0.1296 \mathrm{~g}, 1.0 \mathrm{mmol}$, dissolved in 1 mL of 1,4-dioxane), prop-2-yn-1-ol (1c; $0.1733 \mathrm{~g}, 2 \mathrm{mmol}$, dissolved in 1 mL of 1,4 -dioxane), and benzaldehyde ($\mathbf{2 c} ; 0.1596 \mathrm{~g}, 1.5 \mathrm{mmol}$, dissolved in 1 mL of 1,4-dioxane) sequentially under N_{2}. The resulting mixture was heated in an oil bath preheated at $70^{\circ} \mathrm{C}$ with stirring. After 46.5 h , the reaction was complete as monitored by TLC. The mixture was cooled to r.t. and diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with aq $\mathrm{HCl}(3 \mathrm{M}, 20$ mL). The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL) and dried (anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$). After filtration and evaporation, the residue was purified by chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} 100: 1,300 \mathrm{~mL}\right)$ to afford $(R)-4 \mathrm{cc}$; yield: 0.0644 g (37\%); pale yellow liquid; $[\alpha]_{D}{ }^{20}-245.2$ (c 1.100, CHCl_{3}).
HPLC: Chiralcel OJ-H column, n-hexane $/ i-\mathrm{PrOH}(80: 1), 0.8 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $\left.=60.8 \mathrm{~min}\right), t_{\mathrm{R}}($ minor $)=66.4 \mathrm{~min} ; 98 \% \mathrm{ee}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.32-7.23(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.22-7.12(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{ArH}), 6.17-6.10(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 5.59(\mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 3.67$ ($\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), 2.25-2.14 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.96-1.67 (m, 3 H , $\mathrm{OH}+\mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.1,134.8,128.5,126.7,126.5,95.0$, 94.4, 62.1, 31.8, 24.8.

Synthesis of (R)-6-(4-Bromophenyl)hexa-4,5-dien-1-ol [(R)-4cd]

Using (S)-3a: Following the Typical Procedure II, the reaction of pent-4-yn-1-ol (1c; $0.1729 \mathrm{~g}, 2 \mathrm{mmol}$), 4-bromobenzaldehyde (2d; 0.2831 g, 1.5 mmol$)$, $(S)-3 \mathrm{a}(0.2580 \mathrm{~g}, 1 \mathrm{mmol})$, and $\mathrm{CuBr}_{2}(0.1141 \mathrm{~g}, 0.5$ mmol) in 1,4-dioxane (3 mL) at $70{ }^{\circ} \mathrm{C}$ for 44.5 h afforded (R)-4cd $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} 40: 1,280 \mathrm{~mL}\right)$; yield: $0.1300 \mathrm{~g}(51 \%)$; yellow liquid; $[\alpha]_{\mathrm{D}}{ }^{20}-209.0\left(c 1.02, \mathrm{CHCl}_{3}\right)$.
HPLC: Chiralcel OJ-H column, n-hexane $/ i-\mathrm{PrOH}(50: 1), 1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}($ minor $)=28.9 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=40.5 \mathrm{~min} ; 90 \% e e$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.13(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.13-6.04(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 5.59(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}$), $3.67\left(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.26-2.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 190(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{OH}), 1.83-1.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.2,133.8,131.6,128.0,120.3,94.9$, 94.2, 62.1, 31.7, 24.7.

Using (S)-3b: Following the Typical Procedure II, the reaction of pent-4-yn-1-ol (1c; $0.1730 \mathrm{~g}, 2 \mathrm{mmol}$), 4-bromobenzaldehyde (2d; 0.2839 $\mathrm{g}, 1.5 \mathrm{mmol}),(S)-\mathbf{3 b}(0.1290 \mathrm{~g}, 1 \mathrm{mmol})$, and $\mathrm{CuBr}_{2}(0.1131 \mathrm{~g}, 0.5$ $\mathrm{mmol})$ in 1,4-dioxane (3 mL) at $70^{\circ} \mathrm{C}$ for 45.5 h afforded $(R)-4 \mathbf{c d}\left(\mathrm{CH}_{2}-\right.$ $\left.\mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}, 40: 1,280 \mathrm{~mL}\right)$; yield: $0.1065 \mathrm{~g}(41 \%$, purity $97 \%)$; yellow liquid; $[\alpha]_{D}{ }^{20}-241.5\left(c 0.995, \mathrm{CHCl}_{3}\right)$.
HPLC: Chiralcel OJ-H column, n-hexane $/ i-\operatorname{PrOH}(50: 1), 1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}($ minor $)=29.2 \mathrm{~min}, t_{\mathrm{R}}($ major $)=41.8 \mathrm{~min} ; 94 \% e e$.
IR (neat): 3354, 2936, 1948, 1899, 1587, 1487, 1444, 1387, 1258, 1230, 1197, 1174, 1069, $1009 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.13(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.13-6.02(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 5.59(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}$), $3.67\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.27-2.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.90(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{OH}), 1.80-1.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.2,133.8,131.6,128.0,120.2,94.9$, 94.2, 62.0, 31.7, 24.7.

MS (70 eV, EI): $\left.\left.m / z(\%)=254\left(\mathrm{M}^{+},{ }^{81} \mathrm{Br}\right), 1.77\right), 252\left(\mathrm{M}^{+},{ }^{79} \mathrm{Br}\right), 1.54\right), 31$ (100).

HRMS: m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}^{79} \mathrm{Br}\left(\mathrm{M}^{+}\right)$: 252.0150; found: 252.0145 .

Synthesis of (R)-6-(p-Tolyl)hexa-4,5-dien-1-ol [(R)-4ce]

Using (S)-3a: Following the Typical Procedure II, the reaction of pent-4-yn-1-ol (1c; $0.1732 \mathrm{~g}, 2 \mathrm{mmol}$), 4-methylbenzaldehyde (2e; 0.1795 $\mathrm{g}, 1.5 \mathrm{mmol})$, (S)-3a ($0.2584 \mathrm{~g}, 1.0 \mathrm{mmol}$), and $\mathrm{CuBr}_{2}(0.1141 \mathrm{~g}, 0.5$ mmol) in 1,4-dioxane (3 mL) at $70{ }^{\circ} \mathrm{C}$ for 46.5 h afforded (R)-4ce $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} 40: 1,320 \mathrm{~mL}\right)$; yield: $0.0920 \mathrm{~g}(49 \%)$; pale yellow liquid; $[\alpha]_{D}{ }^{20}-225.7\left(c 1.055, \mathrm{CHCl}_{3}\right)$.
HPLC: Chiralcel OJ-H column, n-hexane $/ i-\mathrm{PrOH}(80: 1), 0.8 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}($ minor $)=59.4 \mathrm{~min}, t_{\mathrm{R}}($ major $)=75.4 \mathrm{~min} ; 76 \% e e$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.17(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArH}), 7.09(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.16-6.07(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 5.57(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 3.67\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.25-2.12(\mathrm{~m}, 2$ $\left.\mathrm{H}, \mathrm{CH}_{2}\right), 1.88-1.64\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OH}+\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=204.7,136.4,131.7,129.2,126.4,94.8$, 94.3, 62.1, 31.8, 24.9, 21.1.

Using (S)-3b: Following the Typical Procedure II, the reaction of pent-4-yn-1-ol (1c; $0.1738 \mathrm{~g}, 2 \mathrm{mmol}$), 4-methylbenzaldehyde (2e; 0.1810 g, 1.5 mmol$),(S)-\mathbf{3 b}(0.1293 \mathrm{~g}, 1.0 \mathrm{mmol})$, and $\mathrm{CuBr}_{2}(0.1142 \mathrm{~g}, 0.5$ mmol) in 1,4-dioxane (3 mL) at $70{ }^{\circ} \mathrm{C}$ for 47.5 h afforded (R)-4ce $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}, 40: 1,280 \mathrm{~mL}\right)$; yield: $0.1046 \mathrm{~g}(56 \%)$; pale yellow liquid.
HPLC: Chiralcel OJ-H column, n-hexane $/ i-\operatorname{PrOH}(50: 1), 1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}$ (minor) $=32.5 \mathrm{~min}, t_{\mathrm{R}}($ major $)=41.2 \mathrm{~min} ; 90 \% \mathrm{ee}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.17(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.09(\mathrm{~d}, \mathrm{~J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.16-6.08(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 5.57(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 3.67\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.25-2.12(\mathrm{~m}, 2$ $\left.\mathrm{H}, \mathrm{CH}_{2}\right), 1.81-1.63\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OH}+\mathrm{CH}_{2}\right)$.
Using (S)-3b; by changing the ratio of starting materials $\mathbf{1 c} / \mathbf{2 e} /(S)-\mathbf{3 b}$ to 1:1.4:1.4): Following the Typical Procedure II, the reaction of pent-4-yn-1-ol (1c; $0.0871 \mathrm{~g}, 1 \mathrm{mmol}), 4$-methylbenzaldehyde ($\mathbf{2 e} ; 0.1683 \mathrm{~g}$, $1.4 \mathrm{mmol}),(S)-\mathbf{3 b}(0.1810 \mathrm{~g}, 1.4 \mathrm{mmol})$, and $\mathrm{CuBr}_{2}(0.1130 \mathrm{~g}, 0.5$ mmol) in 1,4- dioxane (3 mL) at $70{ }^{\circ} \mathrm{C}$ for 42 h afforded (R)-4ce $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} 40: 1,200 \mathrm{~mL}\right)$; yield: $0.0778 \mathrm{~g}(41 \%)$; pale yellow liquid; $[\alpha]_{D}{ }^{20}-266.1\left(c 0.975, \mathrm{CHCl}_{3}\right)$.
HPLC: Chiralcel OJ-H column, n-hexane $/ i-\mathrm{PrOH}(50: 1), 1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}$ (minor) $=38.5 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=46.1 \mathrm{~min} ; 93 \% \mathrm{ee}$.
IR (neat): 3354, 3022, 2936, 2865, 1947, 1902, 1513, 1446, 1395, 1379, 1349, 1313, 1294, 1264, 1212, 1199, 1177, 1113, 1057, 1019 cm^{-1}.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.21-7.13(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.09(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.15-6.08(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 5.56(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH})$, $3.66\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.24-2.12(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 1.93 (br s, $1 \mathrm{H}, \mathrm{OH}$), 1.79-1.66 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=204.7,136.4,131.7,129.2,126.4,94.8$, 94.3, 62.1, 31.7, 24.9, 21.1.

MS (70 eV, EI): $m / z(\%)=188\left(\mathrm{M}^{+}, 11.85\right), 129$ (100).
HRMS: m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}\left(\mathrm{M}^{+}\right)$: 188.1201, found: 188.1198 .

Synthesis of (R)-6-(4-Nitrophenyl)hexa-4,5-dien-1-ol [(R)-4cf]

Using (S)-3a: Following the Typical Procedure II, the reaction of prop-2-yn-1-ol (1c; $0.1733 \mathrm{~g}, 2 \mathrm{mmol}$), 4-nitrobenzaldehyde ($\mathbf{2 f} ; 0.2332 \mathrm{~g}$, $1.5 \mathrm{mmol}),(S)-3 \mathrm{a}(0.2590 \mathrm{~g}, 1 \mathrm{mmol})$, and $\mathrm{CuBr}_{2}(0.1130 \mathrm{~g}, 0.5 \mathrm{mmol})$ in 1,4-dioxane (3 mL) at $70{ }^{\circ} \mathrm{C}$ for 43 h afforded $(R)-4 \mathbf{c f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}\right.$ $80: 1,400 \mathrm{~mL}$); yield: $0.1041 \mathrm{~g}(47 \%)$; pale yellow liquid; $[\alpha]_{\mathrm{D}}{ }^{20}-317.6$ (c $1.175, \mathrm{CHCl}_{3}$).

HPLC: Chiralcel OJ-H column, n-hexane $/ i$ - $\mathrm{PrOH}(90: 10), 1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}($ major $)=20.1 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=22.9 \mathrm{~min} ; 95 \% \mathrm{ee}$.
IR (neat): 3375, 3107, 3075, 2935, 2872, 1946, 1594, 1515, 1494, $1445,1392,1342,1202,1177,1109,1057 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.15(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArH}), 7.40(\mathrm{~d}, \mathrm{~J}=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.26-6.19(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 5.74(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 3.72\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.33-2.23\left(\mathrm{qd}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=3.0\right.$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.90-1.50\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}+\mathrm{OH}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.1,146.3,142.3,126.9,124.0,95.5$, 94.1, 62.0, 31.7, 24.5.

MS (70 eV, EI): $m / z(\%)=219\left(\mathrm{M}^{+}, 12.43\right), 128$ (100).
HRMS: m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right)$: 219.0895; found: 219.0893.
Using (S)-3b: Following the Typical Procedure III, the reaction of prop-2-yn-1-ol (1c; $0.1741 \mathrm{~g}, 2 \mathrm{mmol}$), 4-nitrobenzaldehyde (2f; 0.2332 g , $1.5 \mathrm{mmol}),(S)-\mathbf{3 b}(0.1287 \mathrm{~g}, 1 \mathrm{mmol})$, and $\mathrm{CuBr}_{2}(0.1130 \mathrm{~g}, 0.5 \mathrm{mmol})$ in 1,4-dioxane $(3 \mathrm{~mL})$ at $70^{\circ} \mathrm{C}$ for 43 h , afforded $(R)-4 \mathbf{c f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}\right.$ $80: 1,400 \mathrm{~mL}$); yield: $0.0852 \mathrm{~g}(39 \%)$; pale yellow liquid; $[\alpha]_{\mathrm{D}}{ }^{20}-331.1$ (c $1.025, \mathrm{CHCl}_{3}$).
HPLC: Chiralcel OJ-H column, n-hexane $/ i-\operatorname{PrOH}(90: 10), 1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}($ major $\left.)=20.1 \mathrm{~min}\right), t_{\mathrm{R}}($ minor $)=23.0 \mathrm{~min} ; 96 \% e e$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.15(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArH}), 7.40(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.27-6.19(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 5.74(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$, $=\mathrm{CH}), 3.73\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.33-2.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.85-1.65$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $1.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.1,146.3,142.3,126.9,124.0,95.5$, 94.2, 62.1, 31.7, 24.6.

Synthetic Applications

Synthesis of (R)-Heptadeca-4,5-dienal [(R)-5] via Fe-Catalyzed Aerobic Oxidation of (R)-4ca ${ }^{13}$

To a flame-dried Schlenk tube were added $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(0.0703 \mathrm{~g}$, 0.17 mmol), TEMPO ($0.0272 \mathrm{~g}, 0.17 \mathrm{mmol}$), $\mathrm{NaCl}(0.0102 \mathrm{~g}, 0.17$ $\mathrm{mmol})$, and DCE (3 mL) sequentially at r.t. with stirring. Then $(R)-4 \mathbf{c a}$ $(0.2150 \mathrm{~g}, 0.85 \mathrm{mmol})$ and DCE $(1 \mathrm{~mL})$ were added. After that, the air was extruded out of the reaction mixture by a gas bag filled with O_{2}. The reaction mixture was stirred at r.t. After 4.5 h , the reaction was complete as monitored by TLC. Filtration through a short column of silica gel [eluent: $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$], evaporation, and column chromatography on silica gel $\left(\mathrm{PE} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 4: 1,700 \mathrm{~mL}\right)$ afforded $(R)-5 ;{ }^{5 \mathrm{i}}$ yield: $0.1270 \mathrm{~g}(60 \%)$; colorless liquid; $[\alpha]_{\mathrm{D}}{ }^{20}-59.2$ (c 1.015, $\left.\mathrm{CHCl}_{3}\right)$ \{Lit. ${ }^{5 \mathrm{i}}$ $\left.[\alpha]_{D}{ }^{29}-58.9\left(c 0.99, \mathrm{CHCl}_{3}\right), 98 \% e e\right\}$.
IR (neat): 2955, 2923, 2853, 2716, 1963, 1731, 1466, 1445, 1409, $1387,1378,1352,1284,1255,1219,1184,1117,1070,1057 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.78(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}), 5.21-5.10$ ($\mathrm{m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}$), 2.59-2.50 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.38-2.27 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.02-1.90 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.45-1.19\left(\mathrm{~m}, 18 \mathrm{H}, 9 \times \mathrm{CH}_{2}\right), 0.88(\mathrm{t}, \mathrm{J}=6.8$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.8,202.1,93.0,89.3,42.4,31.9$, 29.63, 29.61, 29.4, 29.3, 29.13, 29.12, 28.8, 22.7, 21.3, 14.1.

MS (70 eV, EI): $m / z(\%)=250\left(\mathrm{M}^{+}, 22.11\right), 79(100)$.

The ee Determination of (R)-5

The ee of $(R)-\mathbf{5}$ was determined after reduction with LiAlH_{4} to $(R)-\mathbf{4 c a}$. (R)-4ca

To a flame-dried Schlenk tube were added $\mathrm{LiAlH}_{4}(0.0235 \mathrm{~g}, 0.6$ $\mathrm{mmol})$ and anhyd $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ under N_{2}. Then the resulting mixture was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath with stirring. After that, (R)-5 $(0.1008 \mathrm{~g}, 0.4 \mathrm{mmol})$ and anhyd $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ were added. Then the reaction mixture was warmed up to r.t. After 16.5 h , the reaction was complete as monitored by TLC. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath, quenched with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 $\times 10 \mathrm{~mL}$). The combined organic layers were washed with brine (5 mL) and dried (anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$). After filtration and evaporation, the residue was purified by chromatography on silica gel [PE (redistilled)/EtOAc 8:1, 450 mL] to afford $(R)-4$ ca; yield: $0.0896 \mathrm{~g}(88 \%)$; colorless liquid; $[\alpha]_{D}{ }^{20}-50.1$ (c 1.02, CHCl_{3}).
HPLC: Chiralcel IC column, n-hexane $/ i-\operatorname{PrOH}(400: 1), 0.6 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm} ; t_{\mathrm{R}}($ minor $)=44.5 \mathrm{~min}, t_{\mathrm{R}}($ major $)=47.6 \mathrm{~min} ; 95 \% e e$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.17-5.04(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}), 3.69(\mathrm{t}, \mathrm{J}=$ $\left.6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.13-2.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.02-1.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.76-1.63 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.44-1.19\left(\mathrm{~m}, 18 \mathrm{H}, 9 \times \mathrm{CH}_{2}\right)$, $0.88\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.8,91.5,90.1,62.3,31.90,31.88$, 29.6, 29.5, 29.3, 29.2, 29.1, 28.9, 25.2, 22.6, 14.1.

Synthesis of (R)-2-(Octadeca-5,6-dienyl)isoindoline-1,3-dione [(R)-6] via Mitsunobu Reaction; ${ }^{14}$ Typical Procedure IV
To a flame-dried Schlenk tube were added (R)-4da ($0.2661 \mathrm{~g}, 1$ mmol) and anhyd THF (5 mL) under N_{2}. Then $\mathrm{PPh}_{3}(0.5240 \mathrm{~g}, 2 \mathrm{mmol})$ and phthalimide ($0.2970 \mathrm{~g}, 2 \mathrm{mmol}$) were added. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ in an ice-water bath with stirring. After that, DEAD ($320 \mu \mathrm{~L}, d=1.106 \mathrm{~g} / \mathrm{cm}^{3}, 0.3554 \mathrm{~g}, 2 \mathrm{mmol}$) was added dropwise over 2 min . The reaction mixture was then warmed up to r.t. After 12 h , the reaction was complete as monitored by TLC. After evaporation, the residue was purified by chromatography on silica gel (PE/EtOAc 15:1, 480 mL) to afford (R)-6; yield: $0.3611 \mathrm{~g}(91 \%$); colorless liquid; $[\alpha]_{\mathrm{D}}{ }^{20}-42.1$ (c 1.10, CHCl_{3}).
HPLC: Chiralcel PC-4 column, n-hexane $/ i-\mathrm{PrOH}(400: 1), 1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}($ minor $)=28.6 \mathrm{~min}, t_{\mathrm{R}}($ major $)=30.7 \mathrm{~min} ; 95 \% e e$.
IR (neat): 2924, 2853, 1961, 1771, 1714, 1615, 1467, 1456, 1435, 1393, 1372, 1361, 1337, 1232, 1212, 1188, 1171, 1116, 1088, 1071, $1039 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.88-7.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.75-7.66(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}), 5.13-4.97(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}), 3.69\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.09-1.88 (m, $\left.4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.79-1.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.51-1.17(\mathrm{~m}, 20$ $\left.\mathrm{H}, 10 \times \mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=203.8,168.4,133.8,132.1,123.1,91.3$, 90.2, 37.8, 31.9, 29.6, 29.5, 29.3, 29.2, 29.1, 28.9, 28.4, 28.0, 26.3, 22.7, 14.1.

MS (70 eV, EI): $m / z(\%)=396\left[(\mathrm{M}+1)^{+}, 6.28\right], 395\left(\mathrm{M}^{+}, 1.24\right), 108$ (100).

HRMS: m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right)$: 395.2824; found: 395.2827.

Synthesis of rac-6 for ee Determination (Scheme 6)

Following the Typical Procedure IV, the reaction of rac-4da (0.2666 g , $1 \mathrm{mmol}), \mathrm{PPh}_{3}(0.5243 \mathrm{~g}, 2 \mathrm{mmol})$, phthalimide ($0.2970 \mathrm{~g}, 2 \mathrm{mmol}$), and DEAD $\left(320 \mu \mathrm{~L}, d=1.106 \mathrm{~g} / \mathrm{cm}^{3}, 0.3554 \mathrm{~g}, 2 \mathrm{mmol}\right)$ in THF (5 mL) at r.t. for 8.5 h afforded rac-6 (PE/EtOAc 15:1, 480 mL); yield: 0.3126 g (79\%); colorless liquid.
IR (neat): 2923, 2853, 1961, 1771, 1714, 1615, 1467, 1435, 1394, $1372,1232,1212,1188,1171,1116,1088,1071,1039 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.85-7.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.75-7.66(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}), 5.12-4.98(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}), 3.69\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.09-1.88 (m, $4 \mathrm{H}, 2 \times \mathrm{CH}_{2}$), 1.79-1.65 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.51-1.17 (m, 20 $\left.\mathrm{H}, 10 \times \mathrm{CH}_{2}\right), 0.87\left(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.8,168.3,133.7,132.1,123.0,91.3$, 90.2, 37.8, 31.9, 29.6, 29.4, 29.3, 29.2, 29.1, 28.9, 28.4, 28.0, 26.3, 22.6, 14.1.

MS (70 eV, EI): $m / z(\%)=396\left[(\mathrm{M}+1)^{+}, 6.28\right], 395\left(\mathrm{M}^{+}, 1.09\right), 108$ (100).

HRMS: m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right)$: 395.2824, found: 395.2831.

Synthesis of Phlomic Acid [(R)-9]

Step 1: Synthesis of Dimethyl (R)-2-(Octadeca-5,6-dien-1yl)malonate $[(R)-8]^{16}$ (Scheme 7)

Scheme 7 Synthesis of dimethyl (R)-2-(octadeca-5,6-dien-1yl)malonate [(R)-8]

To a flame-dried Schlenk tube were added (R)-4da ($0.8790 \mathrm{~g}, 3.3$ $\mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ under N_{2}. Then $\mathrm{PPh}_{3}(1.0390 \mathrm{~g}, 3.96 \mathrm{mmol})$ and imidazole ($0.2725 \mathrm{~g}, 3.96 \mathrm{mmol}$) were added sequentially. After cooling the reaction mixture to $5{ }^{\circ} \mathrm{C}, \mathrm{I}_{2}(1.0060 \mathrm{~g}, 3.96 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ were added. Then the resulting mixture was stirred at this temperature for 20 min until the reaction was complete as monitored by TLC. Filtration through a short column of silica gel [eluent: $\mathrm{PE}(3 \times 20 \mathrm{~mL})$] for the first time, evaporation, and filtration through a

short column of silica gel [eluent: PE ($3 \times 50 \mathrm{~mL}$)] for the second time afforded $(R)-7$ as a liquid, which was used directly in the next step without further purification.
To a flame-dried Schlenk flask were added $\mathrm{NaH}(0.1586 \mathrm{~g}, 3.96 \mathrm{mmol}$, 60% in mineral oil) and anhyd DMF (17 mL) under N_{2} and the reaction mixture was stirred at r.t. Dimethyl malonate ($507 \mu \mathrm{~L}, d=1.14 \mathrm{~g} / \mathrm{cm}^{3}$, $0.5783 \mathrm{~g}, 4.29 \mathrm{mmol}$) was added dropwise in 5 min . After that, the resulting mixture was stirred at r.t. for another 10 min . A solution of $(R)-7$ (prepared as above) in anhyd DMF (16 mL) was added dropwise to the reaction mixture in 5 min and the resulting mixture was stirred at r.t. After 9.75 h , the reaction was complete as monitored by TLC. The resulting mixture was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath, quenched with sat. aq $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30$ $\mathrm{mL})$. The combined organic layers were was washed with $\mathrm{H}_{2} \mathrm{O}(20$ mL), brine (20 mL), and dried (anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$). After filtration and evaporation, the residue was purified by chromatography on silica gel (PE/EtOAc 40:1, 1200 mL) to afford (R)-8; yield: $0.7706 \mathrm{~g}(61 \%$ over two steps); colorless liquid; $[\alpha]_{\mathrm{D}}{ }^{20}-38.0\left(c 1.095, \mathrm{CHCl}_{3}\right)$.
HPLC: Chiralcel PA-2 column, $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(90: 10), 0.7 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm} ; t_{\mathrm{R}}($ major $)=10.7 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=12.3 \mathrm{~min} ; 96 \% e e$.
IR (neat): 2952, 2925, 2854, 1961, 1759, 1739, 1462, 1435, 1343, 1269, 1252, 1228, 1200, 1150, 1077, $1014 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.12-4.99(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}), 3.74(\mathrm{~s}, 6$ $\left.\mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.36(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.03-1.86\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right)$, $1.50-1.19\left(\mathrm{~m}, 22 \mathrm{H}, 11 \times \mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.8,169.8,91.2,90.3,52.4,51.6,31.9$, 29.6, 29.5, 29.3, 29.2, 29.1, 28.9, 28.7, 28.6, 26.8, 22.7, 14.1.

MS (70 eV, EI): $m / z(\%)=380\left(\mathrm{M}^{+}, 1.03\right), 148(100)$.
HRMS: m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$: 380.2927; found: 380.2930.

Synthesis of rac-8 for ee Determination ${ }^{16}$ (Scheme 8)

rac-7

To a flame-dried Schlenk tube were added rac-4da (0.3989 g, 1.5 $\mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL}), \mathrm{PPh}_{3}(0.4725 \mathrm{~g}, 1.8 \mathrm{mmol})$, and imidazole $(0.1239 \mathrm{~g}, 1.8 \mathrm{mmol})$ sequentially under $\mathrm{N}_{2} . \mathrm{I}_{2}(0.4568 \mathrm{~g}, 1.8 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ were added at r.t. with stirring. The resulting mixture was kept stirring at r.t. for 35 min until the reaction was complete as monitored by TLC. After filtration through a short column of silica gel [eluent: $\mathrm{PE}(3 \times 20 \mathrm{~mL})$] and evaporation of the solvent, the residue was purified by chromatography on silica gel (eluent: PE, 400 $\mathrm{mL})$ to afford rac-7; yield: $0.4982 \mathrm{~g}(88 \%)$; colorless liquid.
IR (neat): 2955, 2923, 2852, 1962, 1463, 1456, 1435, 1377, 1367, $1340,1278,1243,1224,1207,1166,1120 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.15-4.99(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}), 3.19(\mathrm{t}, \mathrm{J}=$ $\left.7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ICH}_{2}\right), 2.07-1.92\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right), 1.92-1.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.58-1.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.45-1.20\left(\mathrm{~m}, 18 \mathrm{H}, 9 \times \mathrm{CH}_{2}\right), 0.88(\mathrm{t}, J=6.8$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.9,91.4,90.1,32.9,31.9,29.9,29.67$, 29.65, 29.5, 29.4, 29.2, 29.1, 29.0, 27.8, 22.7, 14.1, 6.7.

MS (70 eV, EI): $m / z(\%)=376\left(\mathrm{M}^{+}, 6.53\right), 109(100)$.
HRMS: m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{I}\left(\mathrm{M}^{+}\right)$: 376.1627; found: 376.1623.

rac-8

To a flame-dried Schlenk flask were added $\mathrm{NaH}(0.0603 \mathrm{~g}, 1.5 \mathrm{mmol}$, 60% in mineral oil) and anhyd DMF (5 mL) under N_{2} and the reaction mixture was stirred at r.t. Dimethyl malonate ($177 \mu \mathrm{~L}, d=1.14 \mathrm{~g} / \mathrm{cm}^{3}$, $0.2018 \mathrm{~g}, 1.5 \mathrm{mmol}$) was added dropwise over 5 min . After that, the resulting mixture was stirred at r.t. for another 30 min and treated with a solution of rac-7 $(0.3751 \mathrm{~g}, 1 \mathrm{mmol})$ in anhyd DMF (5 mL) dropwise over 5 min . Then the reaction mixture was stirred at r.t. After 11.7 h , the reaction was complete as monitored by TLC. The resulting mixture was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath, quenched with sat. aq $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$, and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, brine (15 mL), and dried (anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$). After filtration and evaporation, the residue was purified by chromatography on silica gel (PE/EtOAc 50:1, 650 mL) to afford rac-8; yield: $0.2469 \mathrm{~g}(65 \%)$; colorless liquid.
IR (neat): 2952, 2925, 2854, 1961, 1755, 1738, 1462, 1456, 1435, $1344,1269,1252,1228,1201,1150,1077,1014 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.13-4.98(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}), 3.74(\mathrm{~s}, 6$ $\left.\mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.36(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.03-1.86\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right)$, $1.50-1.19\left(\mathrm{~m}, 22 \mathrm{H}, 11 \times \mathrm{CH}_{2}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.8,169.8,91.2,90.3,52.4,51.6,31.9$, 29.6, 29.4, 29.3, 29.2, 29.1, 28.9, 28.65, 28.55, 26.8, 22.6, 14.1.

MS (70 eV, EI): $m / z(\%)=380\left(\mathrm{M}^{+}, 1.11\right), 148$ (100).
HRMS: m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right): 380.2927$; found: 380.2932

Step 2: Hydrolysis of (R)-8 to Phlomic Acid (Scheme 9)

Scheme 9 Hydrolysis of $(R)-8$ to phlomic acid

Scheme10 Esterification of $(R)-9$

Phlomic Acid [(R)-9] ${ }^{10}$

To a flame-dried Schlenk tube were added $(R)-\mathbf{8}(0.2669 \mathrm{~g}, 0.7 \mathrm{mmol})$, $\mathrm{MeOH}(2 \mathrm{~mL})$, and aq $2.2 \mathrm{~N} \mathrm{NaOH}(1.3 \mathrm{~mL})$ under N_{2}. The resulting mixture was stirred in a pre-heated $\left(100{ }^{\circ} \mathrm{C}\right)$ oil bath. After 2.5 h , the reaction was complete as monitored by TLC. The reaction mixture was cooled to r.t., acidified to pH 1 with aq 1 N HCl , and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine (5 mL) and dried (anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$). After filtration and evaporation, the residue was used in the next step without further purification.
To a flame-dried Schlenk tube were added the product prepared as above and $\mathrm{AcOH}(4.2 \mathrm{~mL})$ under N_{2}. The resulting mixture was stirred in a pre-heated $\left(120^{\circ} \mathrm{C}\right)$ oil bath. After 29 h , the reaction was complete as monitored by TLC. After evaporation, the residue was purified by chromatography on silica gel (PE/EtOAc 3:1, 400 mL) to afford (R)9; ${ }^{10}$ yield: 0.1692 g (78\%); pale yellow solid with a very low $\mathrm{mp}(0-20$ $\left.{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{20}-38.7\left(c 1.035, \mathrm{CHCl}_{3}\right)\left\{\right.$ Lit. $\left.^{10}[\alpha]_{\mathrm{D}}{ }^{30.5}-40.7\left(c 1.03, \mathrm{CHCl}_{3}\right)\right\}$. IR (neat): 2924, 2854, 2673, 1962, 1713, 1463, 1439, 1413, 1377, $1278,1237,1145,1085 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.53\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 5.18-4.99(\mathrm{~m}, 2 \mathrm{H}$, $2 \times=\mathrm{CH}), 2.36\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.05-1.90\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$, $1.72-1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.50-1.20\left(\mathrm{~m}, 22 \mathrm{H}, 11 \times \mathrm{CH}_{2}\right), 0.88(\mathrm{t}, \mathrm{J}=6.6$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.8,180.4,91.1,90.5,34.1,31.9,29.7$, 29.5, 29.4, 29.2, 29.1, 29.0, 28.73, 28.71, 28.5, 24.5, 22.7, 14.1.

MS (70 eV, EI): m/z (\%) = $308\left(\mathrm{M}^{+}, 7.20\right), 67(100)$.

The ee Determination of (R)-9

The ee of $(R)-\mathbf{9}$ was determined after esterification to (R)-10 (Scheme 10).

(R)-10

To a flame-dried Schlenk tube were added $(R)-\mathbf{9}(0.0624 \mathrm{~g}, 0.2 \mathrm{mmol})$ and anhyd DMF $(2 \mathrm{~mL})$ and the resulting mixture was stirred at r.t. After that, $\mathrm{K}_{2} \mathrm{CO}_{3}(0.0831 \mathrm{~g}, 0.6 \mathrm{mmol})$ was added. $\mathrm{MeI}(25 \mu \mathrm{~L}, d=2.28$ $\mathrm{g} / \mathrm{mL}, 0.0568 \mathrm{~g}, 0.4 \mathrm{mmol}$) was added dropwise over 2 min and the resulting mixture was stirred at r.t. After 19 h , the reaction was complete as monitored by TLC. The resulting mixture was quenched with sat. aq $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (5 mL) and dried (anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$). After filtration and evaporation, the residue was purified by chromatography on silica gel (PE/EtOAc 30:1, 360 mL) to afford (R)10; ${ }^{10}$ yield: 0.0554 g (85\%); colorless liquid; $[\alpha]_{D}{ }^{20}-37.3$ (c 1.05, $\left.\mathrm{CHCl}_{3}\right)\left\{\right.$ Lit. $\left.^{10}[\alpha]_{\mathrm{D}}{ }^{30.5}-39.9\left(c 0.99, \mathrm{CHCl}_{3}\right) ; 96 \% e e\right\}$.
HPLC: Chiralcel PA-2 column, n-hexane $/ i-\mathrm{PrOH}(100: 0), 1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=24.6 \mathrm{~min}, t_{\mathrm{R}}($ minor $)=32.3 \mathrm{~min} ; 95 \% e e$.
IR (neat): 2925, 2854, 1961, 1744, 1463, 1436, 1377, 1363, 1258, 1200, 1170, 1088, $1012 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.11-4.99(\mathrm{~m}, 2 \mathrm{H}, 2 \times=\mathrm{CH}), 3.67(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{OCH}_{3}\right), 2.31\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.03-1.91\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right)$, $1.69-1.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49-1.19\left(\mathrm{~m}, 22 \mathrm{H}, 11 \times \mathrm{CH}_{2}\right), 0.88(\mathrm{t}, \mathrm{J}=6.8$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=203.8,174.2,91.1,90.6,51.4,34.0,31.9$, 29.7, 29.6, 29.5, 29.3, 29.2, 29.1, 29.0, 28.7, 28.6, 24.8, 22.7, 14.1.

MS (70 eV, EI): m/z (\%) = 322 ($\mathrm{M}^{+}, 1.28$), 150 (100).

Funding Information

National Natural Science Foundation of China (21572202).

Supporting Information

Please see the copies of 1H NMR, 13C NMR, and HPLC spectra in Supporting Information.Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1592007.

References

(1) For selected reviews on the synthesis of optically active allenes, see: (a) Chu, W.; Zhang, Y.; Wang, J. Catal. Sci. Technol. 2017, 7, 4570. (b) Ye, J.; Ma, S. Org. Chem. Front. 2014, 1, 1210. (c) Neff, R. K.; Frantz, D. E. ACS Catal. 2014, 4, 519. (d) Yu, S.; Ma, S. Chem. Commun. 2011, 47, 5384. (e) Ogasawara, M. Tetrahedron: Asymmetry 2009, 20, 259. (f) Brummond, K. M.; De Forrest, J. E. Synthesis 2007, 795. (g) Krause, N.; Hoffmann-Röder, A. Tetrahedron 2004, 60, 11671. (h) Sydnes, L. K. Chem. Rev. 2003, 103, 1133.
(2) (a) Cambie, R. C.; Hirschberg, A.; Jones, E. R. H.; Lowe, G. J. Chem. Soc. C 1963, 4120. (b) Bew, R. E.; Chapman, J. R.; Jones, E. R. H.; Lowe, B. E.; Lowe, G. J. Chem. Soc. C 1966, 129. (c) de Graaf, W.; Smits, A.; Boersma, J.; van Koten, G. Tetrahedron 1988, 44, 6699. (d) Daviesa, D. G.; Hodge, P. Org. Biomol. Chem. 2005, 3, 1690. (e) Zhang, Y.; Wu, Y. Org. Biomol. Chem. 2010, 8, 4744.
(3) (a) Megati, S.; Goren, Z.; Silverton, J. V.; Orlina, J.; Nishimura, H.; Shirasaki, T.; Mitsuya, H.; Zemlicka, J. J. Med. Chem. 1992, 35, 4098. (b) Egron, D.; Périgaud, C.; Gosselin, G.; Aubertin, A.; Gatanaga, H.; Mitsuya, H.; Zemlicka, J.; Imbacha, J. Bioorg. Med. Chem. Lett. 2002, 12, 265.
(4) (a) Jones, B. C. N. M.; Silverton, J. V.; Simons, C.; Megati, S.; Nishimura, H.; Maeda, Y.; Mitsuya, H.; Zemlicka, J. J. Med. Chem. 1995, 38, 1397. (b) Zhu, Y.; Pai, S. B.; Liu, S.; Grove, K. L.; Jones, B. C. N. M.; Simons, C.; Zemlicka, J.; Cheng, Y. Antimicrob. Agents Chemother. 1997, 41, 1755.
(5) (a) Hoffmann-Röder, A.; Krause, N. Angew. Chem. Int. Ed. 2004, 43, 1196. (b) Bagby, M. O.; Smith, C. R. Jr.; Wolff, I. A. J. Org. Chem. 1965, 30, 4227. (c) Landor, S. R.; Punja, N. Tetrahedron Lett. 1966, 40, 4905. (d) Mikalaijczak, K. L.; Rogers, M. F.; Smith, Jun. C. R.; Wolff, I. A. Biochem. J. 1967, 105, 1245. (e) Cowie, J. S.; Landor, P. D.; Landor, S. R.; Punja, N. J. Chem. Soc., Perkin Trans. 1

1972, 2197. (f) Horler, D. F. J. Chem. Soc. C 1970, 859. (g) Kato, T.; Ishigami, K.; Akasaka, K.; Watanabe, H. Tetrahedron 2009, 65, 6953. (h) Ishigami, K.; Kato, T.; Akasaka, K.; Watanabe, H. Tetrahedron Lett. 2008, 49, 5077. (i) Yu, Q.; Ma, S. Eur. J. Org. Chem. 2015, 1596.
(6) For selected recent reviews, see: (a) Bras, J. L.; Muzart, J. Chem. Soc. Rev. 2014, 43, 3003. (b) Muñoz, M. P. Chem. Soc. Rev. 2014, 43, 3164. (c) Adams, C. S.; Weatherly, C. D.; Burke, E. G.; Schomaker, J. M. Chem. Soc. Rev. 2014, 43, 3136.
(7) For selected recent reviews, see: (a) Neff, R. K.; Frantz, D. E. Tetrahedron 2015, 71, 7. (b) Ye, J.; Ma, S. Acc. Chem. Res. 2014, 47, 989. For selected reports published after 2014, see: (c) Brooner, R. E. M. T.; Brown, J.; Chee, M. A.; Widenhoefer, R. A. Organometallics 2016, 35, 2014. (d) Qiu, Y.; Zhou, J.; Li, J.; Fu, C.; Guo, Y.; Wang, H.; Ma, S. Chem. Eur. J. 2015, 21, 15939. (e) Burrows, L. C.; Jesikiewicz, L. T.; Lu, G.; Geib, S. J.; Liu, P.; Brummond, K. M. J. Am. Chem. Soc. 2017, 139, 15022.
(8) For selected recent reports on the synthesis of functionalized optically active allenes, see: (a) Wang, Y.; Zhang, W.; Ma, S. J. Am. Chem. Soc. 2013, 135, 11517. (b) Chu, W.-D.; Zhang, L.; Zhang, Z.; Zhou, Q.; Mo, F.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2016, 138, 14558. (c) Yao, Q.; Liao, Y.; Lin, L.; Lin, X.; Ji, J.; Liu, X.; Feng, X. Angew. Chem. Int. Ed. 2016, 55, 1859. (d) Liu, Y.; Liu, X.; Hu, H.; Guo, J.; Xia, Y.; Lin, L.; Feng, X. Angew. Chem. Int. Ed. 2016, 55, 4054. (e) Dai, J.; Duan, X.; Zhou, J.; Fu, C.; Ma, S. Chin. J. Chem. 2018, 36, 387. (f) Jiang, Y.; Diagne, A. B.; Thomson, R. J.; Schaus, S. E. J. Am. Chem. Soc. 2017, 139, 1998. (g) Qian, D.; Wu, L.; Lin, Z.; Sun, J. Nat. Commun. 2017, 8, 567. (h) Poh, J.-S.; Makai, S.; von Keutz, T.; Tran, D. N.; Battilocchio, C.; Pasau, P.; Ley, S. V. Angew. Chem. Int. Ed. 2017, 56, 1864.
(9) (a) Huang, X.; Cao, T.; Han, Y.; Jiang, X.; Lin, W.; Zhang, J.; Ma, S. Chem. Commun. 2015, 51, 6956. (b) Huang, X.; Xue, C.; Fu, C.; Ma, S. Org. Chem. Front. 2015, 2, 1040. (c) Tang, X.; Huang, X.; Cao, T.; Han, Y.; Jiang, X.; Lin, W.; Tang, Y.; Zhang, J.; Yu, Q.; Fu, C.; Ma, S. Org. Chem. Front. 2015, 2, 688.
(10) Jiang, X.; Zhang, J.; Ma, S. J. Am. Chem. Soc. 2016, 138, 8344.
(11) For selected examples, see: (a) Wang, D.; Gautam, L. N. S.; Bollinger, C.; Harris, A.; Li, M.; Shi, X. Org. Lett. 2011, 13, 2618. (b) Stoll, A. H.; Blakey, S. B. J. Am. Chem. Soc. 2010, 132, 2108. (c) Evans, R. J. D.; Landor, S. R.; Regan, J. P. J. Chem. Soc. Perkin Trans. 1 1974, 552. (d) Gorins, G.; Kuhnert, L.; Johnson, C. R.; Marnett, L. J. J. Med. Chem. 1996, 39, 4871. (e) Carreira, E. M.; Hastings, C. A.; Shepard, M. S.; Yerkey, L. A.; Millward, D. B. J. Am. Chem. Soc. 1994, 116, 6622. (f) Shepard, M. S.; Carreira, E. M. J. Am. Chem. Soc. 1997, 119, 2597.
(12) Beveridge, R. E.; Batey, R. A. Org. Lett. 2013, 15, 3086.
(13) Ma, S.; Liu, J.; Li, S.; Chen, B.; Cheng, J.; Kuang, J.; Liu, Y.; Wan, B.; Wang, Y.; Ye, J.; Yu, Q.; Yuan, W.; Yu, S. Adv. Synth Catal. 2011, 353, 1005.
(14) Morita, N.; Krause, N. Eur. J. Org. Chem. 2006, 4634.
(15) Aitzetmüller, K.; Tsevegsüren, N.; Vosmann, K. Fett/Lipid 1997, 99, 74.
(16) Mukai, C.; Nomura, I.; Kitagaki, S. J. Org. Chem. 2003, 68, 1376.
(17) (a) Lewis, A.; Ryan, M. D.; Gani, D. J. Chem. Soc., Perkin Trans. 1 1998, 3767. (b) Foley, D. J.; Doveston, R. G.; Churcher, I.; Nelson, A.; Marsden, S. P. Chem. Commun. 2015, 51, 11174. (c) Chao, C.; Yuan, D.; Zhao, B.; Yao, Y. Org. Lett. 2015, 17, 2242.

[^0]: ${ }^{\text {a }}$ The reaction was conducted using $\mathbf{1 c}$, $\mathbf{2 a},(S)-\mathbf{3 b}$, and $\mathrm{CuBr}_{2}\left(20 \mathrm{~mol} \%\right.$) in 1,4 -dioxane (3 mL) on 1 mmol scale at $130^{\circ} \mathrm{C}$ for 12 h . ${ }^{\mathrm{b}}$ Isolated yield.

