Semin Neurol 2016; 36(06): 502-507
DOI: 10.1055/s-0036-1592109
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Today's Approach to Treating Brain Swelling in the Neuro Intensive Care Unit

Shreyansh Shah
1   Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
,
W. Taylor Kimberly
1   Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
01 December 2016 (online)

Abstract

Brain swelling is an urgent clinical problem that frequently accompanies ischemic stroke, brain hemorrhage, and traumatic brain injury; it increases morbidity and mortality associated with them. It occurs due to failure of membrane transporters and leakage of the blood–brain barrier (BBB), resulting in combination of cytotoxic, ionic, and vasogenic edema. Currently, decompressive craniectomy and osmotherapy are the mainstays of management, but these therapies do not halt the underlying molecular cascade leading to brain swelling. Recent advances in the molecular underpinnings of cerebral edema have opened up possibilities of newer targeted therapeutic options. Here the authors outline the current approach for rapid diagnosis and intervention to reduce mortality and morbidity associated with brain swelling.

 
  • References

  • 1 Battey TW, Karki M, Singhal AB , et al. Brain edema predicts outcome after nonlacunar ischemic stroke. Stroke 2014; 45 (12) 3643-3648
  • 2 Hacke W, Schwab S, Horn M, Spranger M, De Georgia M, von Kummer R. ‘Malignant’ middle cerebral artery territory infarction: clinical course and prognostic signs. Arch Neurol 1996; 53 (4) 309-315
  • 3 Donkin JJ, Vink R. Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr Opin Neurol 2010; 23 (3) 293-299
  • 4 Stokum JA, Kurland DB, Gerzanich V, Simard JM. Mechanisms of astrocyte-mediated cerebral edema. Neurochem Res 2015; 40 (2) 317-328
  • 5 Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol 2007; 6 (3) 258-268
  • 6 Simard JM, Sheth KN, Kimberly WT , et al. Glibenclamide in cerebral ischemia and stroke. Neurocrit Care 2014; 20 (2) 319-333
  • 7 Klatzo I. Presidential address. Neuropathological aspects of brain edema. J Neuropathol Exp Neurol 1967; 26 (1) 1-14
  • 8 Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab 2016; 36 (3) 513-538
  • 9 Sheth KN. Early transfer of patients with stroke to comprehensive centers is necessary. Stroke 2014; 45 (12) 3748-3749
  • 10 Asuzu D, Nyström K, Sreekrishnan A , et al. TURN score predicts 24-hour cerebral edema after IV thrombolysis. Neurocrit Care 2016; 24 (3) 381-388
  • 11 Vahedi K, Hofmeijer J, Juettler E , et al; DECIMAL, DESTINY, and HAMLET investigators. Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol 2007; 6 (3) 215-222
  • 12 Seel RT, Sherer M, Whyte J , et al; American Congress of Rehabilitation Medicine, Brain Injury-Interdisciplinary Special Interest Group, Disorders of Consciousness Task Force. Assessment scales for disorders of consciousness: evidence-based recommendations for clinical practice and research. Arch Phys Med Rehabil 2010; 91 (12) 1795-1813
  • 13 Claassen J, Hirsch LJ, Kreiter KT , et al. Quantitative continuous EEG for detecting delayed cerebral ischemia in patients with poor-grade subarachnoid hemorrhage. Clin Neurophysiol 2004; 115 (12) 2699-2710
  • 14 Olson DM, Chioffi SM, Macy GE, Meek LG, Cook HA. Potential benefits of bispectral index monitoring in critical care. A case study. Crit Care Nurse 2003; 23 (4) 45-52
  • 15 Hom J, Dankbaar JW, Soares BP , et al. Blood–brain barrier permeability assessed by perfusion CT predicts symptomatic hemorrhagic transformation and malignant edema in acute ischemic stroke. AJNR Am J Neuroradiol 2011; 32 (1) 41-48
  • 16 Damian MS, Schlosser R. Bilateral near infrared spectroscopy in space-occupying middle cerebral artery stroke. Neurocrit Care 2007; 6 (3) 165-173
  • 17 Muizelaar JP, Marmarou A, Ward JD , et al. Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg 1991; 75 (5) 731-739
  • 18 Geeganage C, Beavan J, Ellender S, Bath PM. Interventions for dysphagia and nutritional support in acute and subacute stroke. Cochrane Database Syst Rev 2012; 10: CD000323
  • 19 Wang X, Dong Y, Han X, Qi XQ, Huang CG, Hou LJ. Nutritional support for patients sustaining traumatic brain injury: a systematic review and meta-analysis of prospective studies. PLoS ONE 2013; 8 (3) e58838
  • 20 Diringer MN ; Neurocritical Care Fever Reduction Trial Group. Treatment of fever in the neurologic intensive care unit with a catheter-based heat exchange system. Crit Care Med 2004; 32 (2) 559-564
  • 21 Kamel H, Navi BB, Nakagawa K, Hemphill III JC, Ko NU. Hypertonic saline versus mannitol for the treatment of elevated intracranial pressure: a meta-analysis of randomized clinical trials. Crit Care Med 2011; 39 (3) 554-559
  • 22 Zornow MH. Hypertonic saline as a safe and efficacious treatment of intracranial hypertension. J Neurosurg Anesthesiol 1996; 8 (2) 175-177
  • 23 Suarez JI, Qureshi AI, Bhardwaj A , et al. Treatment of refractory intracranial hypertension with 23.4% saline. Crit Care Med 1998; 26 (6) 1118-1122
  • 24 Mortazavi MM, Romeo AK, Deep A , et al. Hypertonic saline for treating raised intracranial pressure: literature review with meta-analysis. J Neurosurg 2012; 116 (1) 210-221
  • 25 Hauer EM, Stark D, Staykov D, Steigleder T, Schwab S, Bardutzky J. Early continuous hypertonic saline infusion in patients with severe cerebrovascular disease. Crit Care Med 2011; 39 (7) 1766-1772
  • 26 Peterson B, Khanna S, Fisher B, Marshall L. Prolonged hypernatremia controls elevated intracranial pressure in head-injured pediatric patients. Crit Care Med 2000; 28 (4) 1136-1143
  • 27 Qureshi AI, Suarez JI, Bhardwaj A , et al. Use of hypertonic (3%) saline/acetate infusion in the treatment of cerebral edema: effect on intracranial pressure and lateral displacement of the brain. Crit Care Med 1998; 26 (3) 440-446
  • 28 Simma B, Burger R, Falk M, Sacher P, Fanconi S. A prospective, randomized, and controlled study of fluid management in children with severe head injury: lactated Ringer's solution versus hypertonic saline. Crit Care Med 1998; 26 (7) 1265-1270
  • 29 Kaufmann AM, Cardoso ER. Aggravation of vasogenic cerebral edema by multiple-dose mannitol. J Neurosurg 1992; 77 (4) 584-589
  • 30 Node Y, Nakazawa S. Clinical study of mannitol and glycerol on raised intracranial pressure and on their rebound phenomenon. Adv Neurol 1990; 52: 359-363
  • 31 Gonda DD, Meltzer HS, Crawford JR , et al. Complications associated with prolonged hypertonic saline therapy in children with elevated intracranial pressure. Pediatr Crit Care Med 2013; 14 (6) 610-620
  • 32 Jüttler E, Unterberg A, Woitzik J , et al; DESTINY II Investigators. Hemicraniectomy in older patients with extensive middle-cerebral-artery stroke. N Engl J Med 2014; 370 (12) 1091-1100
  • 33 Olm-Shipman C, Marquevich V, Rosand J , et al. Abstract W P299: Impact of an institutional guideline on implementing early decompressive hemicraniectomy (DHC) for large middle cerebral artery stroke. Stroke 2015; 46: AWP299
  • 34 Zweckberger K, Juettler E, Bösel J, Unterberg WA. Surgical aspects of decompression craniectomy in malignant stroke: review. Cerebrovasc Dis 2014; 38 (5) 313-323
  • 35 Kelly AG, Holloway RG. Health state preferences and decision-making after malignant middle cerebral artery infarctions. Neurology 2010; 75 (8) 682-687
  • 36 Kelly AG, Hoskins KD, Holloway RG. Early stroke mortality, patient preferences, and the withdrawal of care bias. Neurology 2012; 79 (9) 941-944
  • 37 Brain Trauma Foundation ; American Association of Neurological Surgeons; Congress of Neurological Surgeons. Guidelines for the management of severe traumatic brain injury. J Neurotrauma 2007; 24 (Suppl. 01) 1-106
  • 38 Chesnut RM, Temkin N, Carney N , et al; Global Neurotrauma Research Group. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med 2012; 367 (26) 2471-2481
  • 39 Stein DM, Hu PF, Brenner M , et al. Brief episodes of intracranial hypertension and cerebral hypoperfusion are associated with poor functional outcome after severe traumatic brain injury. J Trauma 2011; 71 (2) 364-373 , discussion 373–374
  • 40 Sahuquillo J, Arikan F. Decompressive craniectomy for the treatment of refractory high intracranial pressure in traumatic brain injury. Cochrane Database Syst Rev 2006; 1 (1) CD003983
  • 41 Cooper DJ, Rosenfeld JV, Murray L , et al; DECRA Trial Investigators; Australian and New Zealand Intensive Care Society Clinical Trials Group. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med 2011; 364 (16) 1493-1502
  • 42 Venkatasubramanian C, Mlynash M, Finley-Caulfield A , et al. Natural history of perihematomal edema after intracerebral hemorrhage measured by serial magnetic resonance imaging. Stroke 2011; 42 (1) 73-80
  • 43 Cai X, Rosand J. The evaluation and management of adult intracerebral hemorrhage. Semin Neurol 2015; 35 (6) 638-645
  • 44 Morgenstern LB, Hemphill III JC, Anderson C , et al; American Heart Association Stroke Council and Council on Cardiovascular Nursing. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2010; 41 (9) 2108-2129
  • 45 Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM ; STICH II Investigators. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet 2013; 382 (9890) 397-408
  • 46 Dey M, Stadnik A, Awad IA. Spontaneous intracerebral and intraventricular hemorrhage: advances in minimally invasive surgery and thrombolytic evacuation, and lessons learned in recent trials. Neurosurgery 2014; 74 (Suppl. 01) S142-S150
  • 47 Takeuchi S, Wada K, Nagatani K, Otani N, Mori K. Decompressive hemicraniectomy for spontaneous intracerebral hemorrhage. Neurosurg Focus 2013; 34 (5) E5
  • 48 Sheth KN, Elm JJ, Beslow LA, Sze GK, Kimberly WT. Glyburide Advantage in Malignant Edema and Stroke (GAMES-RP) Trial: rationale and design. Neurocrit Care 2016; 24 (1) 132-139
  • 49 Okuma Y, Liu K, Wake H , et al. Glycyrrhizin inhibits traumatic brain injury by reducing HMGB1-RAGE interaction. Neuropharmacology 2014; 85: 18-26
  • 50 Jayakumar AR, Valdes V, Norenberg MD. The Na-K-Cl cotransporter in the brain edema of acute liver failure. J Hepatol 2011; 54 (2) 272-278
  • 51 Lu KT, Cheng NC, Wu CY, Yang YL. NKCC1-mediated traumatic brain injury-induced brain edema and neuron death via Raf/MEK/MAPK cascade. Crit Care Med 2008; 36 (3) 917-922
  • 52 O'Donnell ME, Tran L, Lam TI, Liu XB, Anderson SE. Bumetanide inhibition of the blood–brain barrier Na-K-Cl cotransporter reduces edema formation in the rat middle cerebral artery occlusion model of stroke. J Cereb Blood Flow Metab 2004; 24 (9) 1046-1056
  • 53 Fazzina G, Amorini AM, Marmarou CR , et al. The protein kinase C activator phorbol myristate acetate decreases brain edema by aquaporin 4 downregulation after middle cerebral artery occlusion in the rat. J Neurotrauma 2010; 27 (2) 453-461
  • 54 Manley GT, Fujimura M, Ma T , et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 2000; 6 (2) 159-163
  • 55 Kasner SE, Demchuk AM, Berrouschot J , et al. Predictors of fatal brain edema in massive hemispheric ischemic stroke. Stroke 2001; 32 (9) 2117-2123
  • 56 von Kummer R, Meyding-Lamadé U, Forsting M , et al. Sensitivity and prognostic value of early CT in occlusion of the middle cerebral artery trunk. AJNR Am J Neuroradiol 1994; 15 (1) 9-15 , discussion 16–18
  • 57 Thomalla G, Hartmann F, Juettler E , et al; Clinical Trial Net of the German Competence Network Stroke. Prediction of malignant middle cerebral artery infarction by magnetic resonance imaging within 6 hours of symptom onset: a prospective multicenter observational study. Ann Neurol 2010; 68 (4) 435-445
  • 58 Oppenheim C, Samson Y, Manaï R , et al. Prediction of malignant middle cerebral artery infarction by diffusion-weighted imaging. Stroke 2000; 31 (9) 2175-2181
  • 59 Broderick JP, Diringer MN, Hill MD , et al; Recombinant Activated Factor VII Intracerebral Hemorrhage Trial Investigators. Determinants of intracerebral hemorrhage growth: an exploratory analysis. Stroke 2007; 38 (3) 1072-1075
  • 60 Flibotte JJ, Hagan N, O'Donnell J, Greenberg SM, Rosand J. Warfarin, hematoma expansion, and outcome of intracerebral hemorrhage. Neurology 2004; 63 (6) 1059-1064
  • 61 Demchuk AM, Dowlatshahi D, Rodriguez-Luna D , et al; PREDICT/Sunnybrook ICH CTA study group. Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): a prospective observational study. Lancet Neurol 2012; 11 (4) 307-314
  • 62 Sansing LH, Kaznatcheeva EA, Perkins CJ, Komaroff E, Gutman FB, Newman GC. Edema after intracerebral hemorrhage: correlations with coagulation parameters and treatment. J Neurosurg 2003; 98 (5) 985-992
  • 63 Vemmos KN, Tsivgoulis G, Spengos K , et al. Association between 24-h blood pressure monitoring variables and brain oedema in patients with hyperacute stroke. J Hypertens 2003; 21 (11) 2167-2173
  • 64 Carhuapoma JR, Hanley DF, Banerjee M, Beauchamp NJ. Brain edema after human cerebral hemorrhage: a magnetic resonance imaging volumetric analysis. J Neurosurg Anesthesiol 2003; 15 (3) 230-233
  • 65 Castillo J, Dávalos A, Alvarez-Sabín J , et al. Molecular signatures of brain injury after intracerebral hemorrhage. Neurology 2002; 58 (4) 624-629