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Microbiology

Bacteria within the genus Acinetobacter are encapsulated,
non–lactose fermenting, oxidase-negative gram-negative
coccobacilli that may cause infections in health care or
community settings, particularly in patients with comorbid-
ities or skin/soft-tissue injuries.1–3 More than 20 Acineto-
bacter species have been identified,1 but the vast majority of
clinical infections are caused by organisms within the A.
calcoaceticus-A. baumannii complex (ABC).1,4–6 This complex
comprises four species; A. baumannii, A. nosocomialis, and A.
pittii cause clinical infections in humans, whereas A. calcoa-
ceticus is an environmental organism of negligible clinical

significance.1 A. baumannii is the most common species in
most regions; the prevalence of A. pittii and A. nosocomialis is
higher in Southeast Asia andA. pittiimaybemore common in
Scandinavian countries.6–8 A. baumannii has been associated
with heightened mortality and a higher degree of antimicro-
bial resistance compared with other Acinetobacter spp.1,6,9

Clinical Features

Acinetobacter species (spp.) most frequently cause nosoco-
mial infections in critically ill or debilitated patients,10,11

including ventilator-associated pneumonia (VAP),10,12–14

bloodstream infections (BSI),6,11,15 device-associated
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Abstract Bacteria within the genus Acinetobacter (principally A. baumannii-calcoaceticus complex
[ABC]) are gram-negative coccobacilli that may cause nosocomial infections in critically
ill or debilitated patients (particularly ventilator-associated pneumonia and infections
of the bloodstream, urinary tract, andwounds). Treatment of Acinetobacter infections is
difficult, as Acinetobacter spp. are intrinsically resistant tomultiple antimicrobial agents,
and have a remarkable ability to acquire new resistance determinants via mechanisms
that include plasmids, transposons, integrons, and resistance islands. Since the 1990s,
global resistance to antimicrobials has escalated dramatically among ABC. Global
spread of multidrug-resistant (MDR)-A. baumannii strains reflects dissemination of a
few clones between hospitals, geographic regions, and continents; excessive use of
antibiotics amplifies this spread. Many isolates are resistant to all antimicrobials except
colistin (polymyxin E) and tigecycline, and some infections are untreatable with
existing antimicrobial agents. Antimicrobial resistance poses a serious threat to treat
or prevent infections due to ABC. Strategies to curtail environmental colonization with
MDR-ABD will require aggressive infection control efforts and cohorting of infected
patients. Thoughtful antibiotic strategies are essential to limit the spread of MDR-ABC.
Optimal therapy will likely require combination antimicrobial therapy of existing
antibiotics as well as development of novel antibiotic classes.
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infections (DAI),16 wound or skin and soft-tissue infections
(SSTI),1,17 burns,18,19 urinary tract infections (UTI),1 intra-
abdominal infections (IAI),17 and meningitis.1 Additionally,
Acinetobacter spp. have been implicated in SSTI sustained
during disasters, including earthquakes,20 tsunamis,21

terrorist attacks,22 and combat injuries in Vietnam,23 Iraq
and Afghanistan,24,25 Ukraine,26 Lebanon, and Syria.1,27

Infections due to Acinetobacter spp. occur more frequently
in subtropical or tropical regions; in temperate climates,
infections are more common in the summer.1,24,28 Commu-
nity-acquired pneumonia (CAP) due to ABC rarely occurs in
temperate climates, but fulminant CAP, sometimes with
septic shock, has been described in Asian-Pacific
regions.2,3,29–31 Factors predisposing to ABC-associated
CAP include alcoholism,32,33 diabetes mellitus, male gender,
renal or pulmonary disease, cirrhosis, advanced age,
smoking.3,31

Prognosis of Infections Due to A. Baumannii

Mortality rates with VAP or BSI due to Acinetobacter spp. are
30 to 75%; these high mortality rates in part reflect comor-
bidities and severity of illness.1,15,34–37 In the EPIC II study, a
multinational study of 14,414 ICU patients, infection with
ABC was independently associated with a greater risk for
hospital death (odds ratio [OR]: 1.53, p < 0.001).38 Within
the past three decades, resistance rates among ABC have
escalated globally.1 Emergence of multidrug-resistant (MDR)
strains has undoubtedly contributed to mortality. Not sur-
prisingly, inappropriate initial empiric antibiotic therapy
(IET) for pneumonia or sepsis due to ABC has been associated
with heightened mortality.39–41 In a recent retrospective
review of 1,423 patients hospitalized with sepsis or pneu-
monia due to ABC, 82.3% of isolates were MDR.40 MDR-ABC
strongly predicted receipt of IET (OR: 5.5, p < 0.001) and IET
was associated with higher hospital mortality (OR: 1.8,
p < 0.001).40 In light of the rising incidence of MDR-ABC,42

amultinational consensus statement was recently published
regarding the management and prevention of A. baumannii
infections in the ICU.43

Infections Due to ABC in the Hospital Setting

ICU Infections
Most ABC infections occur in hospitalized patients in the ICU,
often with multiple comorbidities. Device-related infections
(DRI) are typical (i.e., VAP, central venous catheter [CVC]-
associated BSI, surgical site infections (SSI), catheter-associ-
ated UTIs). The EPIC II point prevalence study in 2007
comprising 75 countries implicated Acinetobacter spp. in
8.8% of all ICU infections, with rates of 19% in Asia and 17%
in Eastern Europe.38 In the SENTRY study from January 2009
to December 2011, ABCs were implicated in 7% of ICU
infections in the United States and Europe.44 Even higher
rates of ABC infections have been reported in Latin
America45,46 and Asia.17,47,48 In a review of Vietnamese
pediatric ICUs, ABC was implicated in 18.4% of hospital-
acquired infections (HAI); 65% of isolates were carbapenem

resistant (CPR).49 In a prospective study from six hospitals in
Iran (2011–2012), ABC was implicated in 35% of DRI among
hospitalized adults.16 Importantly, 70.5% were CPR.

Hospital-Acquired Pneumonia
ABC is a common cause of ICU-acquired pneumonia,
accounting for 8 to 14% of VAP in the United States50 and
Europe,51 but much higher rates (19% to >50%) in Asia,48,52

Latin America,53 and someMiddle Eastern54 countries. In the
United States, rates of VAP due to ABC increased from 4% in
1986 to 7.0% in 2003; no increase was observed for any other
gram-negative bacilli.55 Data from 463 hospitals in the
United States from January 2006 to October 2007 implicated
A. baumannii in 8.4% of VAP.50 In a study of 411 cases of VAP
from nine European countries, A. baumannii was implicated
in 13.9% of cases.51 In a cohort of 827 cases of VAP in 27 ICUs
in Europe, A. baumanniiwas implicated in 11% of early-onset
and 26.5% of late-onset VAP.56 In Greece and Turkey, ABCwas
the most common cause of VAP.56 One prospective study in
Turkey implicated ABC in 54% of VAP.54 Rates of VAP due to
ABC arehigh in tropical or subtropical regions, particularly in
Asia. In a series of 621 cases of VAP in Japan from 2005 to
2011, Acinetobacter accounted for 54.3% of cases.52 A pro-
spective study in 10 Asian countries from 2008 to 2009 of
HAP in adults (n ¼ 2,554) implicated Acinetobacter spp. in
36.5% of cases.47 Importantly, 67.3% of Acinetobacter spp.
isolates were resistant to imipenem.47

Risk Factors for Colonization or Infection
with Acinetobacter spp.

In critically ill patients, Acinetobacter spp. may colonize
the gastrointestinal (GI) tract, skin, and respiratory tract,
and may cause serious infections.1,24 Risk factors for
acquisition of Acinetobacter spp. include invasive proce-
dures or devices, prolonged ICU stay, mechanical ventila-
tion (MV), enteral feedings, burns, and recent use of
broad-spectrum antibiotics, particularly cephalosporins
(CEPHS) or fluoroquinolones (FQs)1,24,34,57,58 (►Table 1).
A prospective study identified the following independent
risk factors for ICU-acquired A. baumannii: (1) prior
occupant in that room with A. baumannii (OR: 4.2,
p < 0.001) and (2) MV (OR: 9.3, p < 0.05).59 Diabetes
mellitus may increase the risk of recurrent or persistent
colonization with ABC.60 Risk factors for ABC bacteremia
among ICU patients include colonization with ABC; high
APACHE II scores; MV; presence of an endotracheal tube;
recent invasive procedures; CVCs; and prior antimicro-
bials.1 In one study, colonization of CVCs with MDR-ABC
was associated with a 28% risk of subsequent bacter-
emia.61 Studies in patients with malignancies cited the
following risk factors for A. baumannii infection: CVC and
nasogastric tubes,62 admission to the ICU,63 dialysis, and
prolonged ICU stay64; hematological malignancies; use of
cefepime; and use of total parenteral nutrition (TPN).57 In
neonatal ICUs, low birth weight, TPN, and presence of
CVCs were risk factors for bacteremias due to ABC com-
pared with uninfected infants.65
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Acinetobacter spp. are ubiquitous and may survive for
prolonged periods onwet or dry surfaces.24,34 Contaminated
environmental sources and transmission via medical per-
sonnel may cause outbreaks of nosocomial infections.43,66,67

Acquisition and spread of ABC has been noted in hospitals,66

rehabilitation centers, and long-term care facilities (LTCFs),
among pilgrims returning from the Hajj (Makkah)68 and in
the community (particularly among the elderly).1,2 Colo-
nized or infected patients, selection pressure from antimi-
crobial use, and incomplete compliance with infection
control procedures may facilitate persistence or spread of
MDR-ABC within hospital or institutional settings.1,66

Removal or disinfection and sterilization of contaminated
equipment (e.g., ventilator or nebulizer tubing) or fomites
may eliminate the problem.24,66 An outbreak of MDR-ABC in
a surgical ICU was linked to aerosolization of ABC during
pulsatile lavage of wounds.67 Multifaceted infection control
measures led to control of the outbreak. Interestingly, addi-
tional risk factors for acquisition of MDR-ABC included
receipt of fluconazole (OR: 73.3), receipt of levofloxacin
(OR: 11.5), and chronic pulmonary disease (OR: 11.5).67

ABC Virulence Factors and Pathogenesis

The virulencemechanisms and pathogenesis of A. baumannii
infections have been reviewed elsewhere.69,70 A. baumannii
has simple growth requirements and may survive in dry and
desiccated conditions for prolonged periods1,69; further, A.
baumannii is able to adhere to living or inert surfaces and
form biofilms.1,2 Additional bacterial factors that may
heighten survival and virulence include outer membrane
porins, capsule, lipopolysaccharide, regulatory proteins, and
iron acquisition systems.1,2,71

Mechanisms of Antimicrobial Resistance

Acinetobacter spp. have innate (chromosomal) resistance
mechanisms against multiple antimicrobials but also can
acquire new resistance determinants via mobile genetic
elements such as plasmids, transposons, integrons, inser-
tion sequences, and resistance islands.1–3,69,72–74 Mecha-
nisms of antimicrobial resistance are numerous and include
(1) enzymatic inactivation or modification of antimicro-
bials; (2) alteration in the bacterial target site(s); (3)
permeability barriers to uptake of antimicrobials; (4) active
efflux pumps (that extrude antibiotics from bacterial cells);
(5) combinations of mechanisms, which may occur as the
result of large genomic islands containing multiple
resistance genes.1–3,70,72

Global Escalation of Antimicrobial
Resistance

Within the past three decades, antimicrobial resistance rates
amongABC have escalated dramaticallyworldwide.17,72,75 In
some countries, more than 90% of ABCs are MDR.17 Molecu-
lar-based strain typing by pulse field gel electrophoresis
(PFGE) or multilocus sequence typing (MLS) methods has
documented global spread of MDR “epidemic clones”
between hospitals, regions, and continents.72 International
spread has been extensively documented: for example,
between Brazil and Argentina76; from Iraq to Germany and
the United States among military personnel77,78; from
northwestern Europe to the Czech Republic and globally79;
from Turkey to Europe, the Middle East, and the rest of
Asia80; from southern to northern Europe, the Middle East,
rest of Asia, and Latin America81; from Europe to multiple
continents.34 The rate of increase may be amplified by
selection pressure from antimicrobial use, crowding, lack
of hygiene, and increased worldwide travel.24,34

Impact of Antimicrobial Use on
Antimicrobial Resistance

Not surprisingly, the use of broad-spectrum antimicrobials
has been linked to emergence of antimicrobial resistance.
In the early 1990s, the use of imipenem against cephalo-
sporin-resistant Klebsiella pneumoniae was associated
with emergence of imipenem-resistant ABC in one New
York hospital.82 Further, in multiple hospitals in Brooklyn,
New York, there was an association between the use of
third-generation CEPHS and aztreonam and CP-resistant
ABC.83 In one case–control study in a surgical ICU, risk
factors for acquisition of imipenem-resistant (IR) and
imipenem-susceptible (IS) strains of A. baumannii were
assessed.84 Risk factors for IR-ABC were ICU stay (OR:
21.5), prior exposure to imipenem (OR: 9.2), and prior
exposure to third-generation CEPHS (OR: 2.1). Risk factors
for IS-ABC include ICU stay (OR: 8.l) and prior exposure to
third-generation CEPHS (OR: 2.1). Regionally and globally,
selection pressure is the key determinant of emergence of
CPR or MDR-ABC.

Table 1 Risk factors for Acinetobacter acquisition or infection

Risk factor Reference

Invasive procedures, devices 62,65

ICU admission and/or prolonged stay 1,64,67

Mechanical ventilation and duration
of mechanical ventilation

59,64,67

Nasogastric tube 62

Receipt of broad-spectrum antibiotics 57,62,64,67

Receipt of fluconazole 67

Prior hospital room occupant
with A. baumannii

59

Colonization with Acinetobacter 1

Severity of illness score 67

Dialysis 64

Total parenteral nutrition 57,65

Hematologic malignancy 57

Exposure to contaminated fomites 43,66,67

Chronic pulmonary disease 67
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Resistance to β-Lactams

β-Lactamases
All A. baumannii strains possess a chromosomal AmpC
cephalosporinase that confers resistance to penicillins and
early-generation cephalosporins (CEPHS); however, under
normal circumstances, resistance to third- and fourth-
generation CEPHS due to AmpC is clinically insignificant.24,85

Clinically significant resistance may develop via hyperpro-
duction of the AmpC cephalosporinase,85 the presence of
insertion sequences that promote β-lactamase activity,46 or
incorporation of mobile resistance genes.86

β-Lactamases are categorizedbasedonmolecular structure
into groups A through D and functionally into three groups
(1–3) based on the target enzyme they degrade.87,88 Group 1
(class C) cephalosporinases are relatively narrow spectrum.
Group 2 (classes A and D) include serine β-lactamases and
extended-spectrum β-lactamases (ESBLs) and have a broader
spectrum of activity.88 Group 3 enzymes include metallo β-
lactamases (class B), which are potent hydrolyzers of CP and
are not inhibited by β-lactamase inhibitors.88 β-Lactamases of
the IMP, VIM, SIM, and NDM-1 families fall within Group 3.74

Extended-Spectrum β-Lactamases
Numerous extended-spectrum β-lactamases (ESBLs) includ-
ing SHV, TEM, PER, VEB, GES, and CTX-M confer high-grade
resistance to all CEPHS.1,34 ESBL clones (TEM or SHV) were
initially described in Enterobacteriaceae in France and
Belgium in the late 1980s and mid-1990s,89,90 and rapidly
spread globally.91 By the late 1990s, other plasmid-encoded
ESBLs (e.g., PER-1, VEB, CTX-M, and GES) were described
among Enterobacteriaceae91 and less commonly among P.
aeruginosa and Acinetobacter spp.34 ESBL-containing plas-
mids (PER-1 type) among A. baumannii (as well as P. aeru-
ginosa, and Klebsiella spp.) were first recognized in the late
1990s in Turkey80 and France92 and spread globally.34 Clus-
ters of ABC infections due to VEB-1 type ESBL were noted
among French hospitals in 2003.93 Rapid clonal spread to
Belgium,94 Argentina,95 Lebanon,34 and globally34 ensued.
Other ESBLs identified in ABC include TEM-92 and -116 from
Italy and the Netherlands, respectively; SHV-12 from China
and the Netherlands, CTX-M-2 and CTX-M-43 from Japan
and Bolivia, respectively.4 Later, CTX-M ESBLs were detected
in India,96 Haiti,97 Brazil,98 and globally.

Carbapenemases
Manyβ-lactamases (including ESBLs)mayalso havehydrolytic
activity against CPs via production of carbapenamases (CPE).
The emergence of carbapenemases has created a major “hole”
in antibiotic coverage against ABC. Carbapenemases include
group 2 class D oxacillinases (e.g., OXA enzymes) and class B
metallo-β-lactamases (MBLs) (e.g., IMP, VIM, and SIM-1
groups)34,85 and the newer CPE (i.e., KPC-like; GES-like,99–102

New Delhi metallo-β-lactamase-1 [NDM-1]).1,69,103,104

Class D Serine Carbapenemases
Globally, the most common CPE in A. baumannii are the class
D serine oxacillinases (OXA), represented by the OXA-23-,

OXA-24-, OXA-58-, and OXA-143-like types that can be
encoded on chromosomes or plasmids.1,46,105–107 The first
CPE (an OXA-type enzyme) in ABC was discovered in Scot-
land 1985.108 By themid-1990s, CPR-ABC clones (principally
OXA-type CPE) were noted in Latin America,46,109 the United
Kingdom (UK),110,111 Europe,1,34,105 North America,1,34

Australia,1 Africa, the Middle East, and Asia.112 In 2003,
the OXA-58 oxacillinase (blaOXA-58 gene) was isolated from
a CPR-Acinetobacter strain in Toulouse, France.105 Subse-
quently, OXA-58–producing CPR-ABC strains were reported
in other Mediterranean countries (e.g., Lebanon, Turkey)34

and China.113 After 2009, ABC-producing OXA-23 (blaOXA-23
gene) became the dominant OXA in Europe,114 United
States,115 Latin America,106 and globally.69,116 Three clonal
lineages (known as Worldwide Clones 1, 2, and 3) dominate
among clinical isolates of MDR-ABC globally.1,34

KPC, a CPE,first reported in 1996 inK. pneumoniae in North
Carolina,117 spreads rapidly within the northeastern United
States 118 and to France,119 Israel, Greece, Italy,120 and global-
ly.91 KPC is encoded on plasmids in Enterobacteriaceae and P.
aeruginosa,119,121 but has not widely disseminated among
ABC. KPC-producing ABCs were detected in 10 isolates of A.
baumannii in Puerto Rico in 2010.122 To our knowledge, KPC-
producing ABCs have not been reported in other countries.121

A newer group of CPEs termed GES (Guiana extended-
spectrum β � lactamases) was first identified in K. pneumo-
niae in 2000, and later reported in Acinetobacter spp. in
France in 2009123 followed by rapid spread to Belgium,100 the
Middle East, and Northern Africa.99,101,102,124–126

A novel CPE, termed NDM-1, was first detected in a K.
pneumoniae isolate in a Swedish patient transferred from
India.103 Retrospective studies showed that NDM-1 had been
endemic among K. pneumoniae and Escherichia coli in Indian
hospitals since 2006.127 By 2010, NDM-1-producing Enter-
obacteriaceae had been found on five continents and linked
to travel in India or Pakistan.128 In the United States, three
cases of infections due to NDM-1-producing Enterobacter-
iaceaewere reported in 2010; all three had recently received
medical care in India.129 From 2010 on, numerous publica-
tions cited NDM-1-producing ABC in Europe,72,126,130–134

the Middle East,135–138 Africa,132,139–144 Asia.145–149 Epide-
miological reviews suggest that the majority of infections
due toNDM-1-producing ABC occur in India, Asia, theMiddle
East, and the Balkans.104 Berrazeg et al reviewed all pub-
lications of infections due to NDM-1-producing bacteria
from 2009 to December 31, 2012, and identified 950
cases.104 Only 36 cases (3.8%) were due to ABC. Although
infections due to NDM-1-producing ABC have been cited in
Brazil,150 Paraguay,151Argentina,152 andHonduras,153NDM-
1-producing ABC appears to be rare in the Americas.

Epidemiology and History of Antimicrobial
Resistance among Acinetobacter spp.

In the 1970s, Acinetobacter spp. were usually susceptible to
ampicillin, cephalosporins, carbapenems (CPs), and several
antibiotic classes.1 By the 1980s, resistance to various classes
of antibiotics appeared, but nearly all isolates remained

Seminars in Respiratory and Critical Care Medicine Vol. 38 No. 3/2017

Infections Due to Acinetobacter baumannii in the ICU Lynch et al.314

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



susceptible to CPs. In the early 1990s, carbapenem-resistant
(CPR) strains emerged.1 Importantly, CPR-ABCs are often
resistant to all classes of antimicrobials except colistin and
tigecycline.1,34 Ominously, strains of Acinetobacter resistant
to colistin and tigecycline have been reported.154,155 Drug
resistance has an adverse impact on clinical outcomes.
Compared with patients with CP-susceptible strains,
patients with CPR-ABC infections have increased mortality
and increased hospital and ICU length of stay.1

In the United States (and globally), CPR-ABCs have esca-
lated dramatically over the past two decades. In the National
Nosocomial Infections Surveillance (NNIS) System, CPR-ABC
(ICU isolates) in the United States increased from 0% in 1986
to 20% in 2002.55 In a surveyofmore than 300 hospitals in the
United States, CPR-A. baumannii increased from9% in 1995 to
40% in 2004.24 The MYSTIC Study surveyed changes in
antimicrobial resistance from clinical isolates from 15 U.S.
hospitals over a decade; resistance to imipenem increased
from 10% in 1999 to 48% in 2008.156 The Surveillance
Network (TSN) database examinedmore than 55,000 isolates
of Acinetobacter spp. in the United States from 2002 to 2008;
CPR increased from 20.6% in 2002 to 49.2% in 2008.157 A
survey of nine regions in the United States from 2005 to 2011
found that 30% of 2,900 isolates of ABC were MDR.158

Another study in the United States in 2010 noted that 50%
of 514 clinical isolates of ABC were CPR.159 In the SENTRY
study from 2009 to 2011, susceptibility rates to imipenem in
the United States were 43% (ICU) and 63% (non-ICU) and in
Europe 45% (ICU) and 56% (non-ICU).44

Worldwide, rates of CPR-ABC have been highest in Greece,
Taiwan, and Latin America,46,106,160–162 but remarkable
differences between countries have been noted.17,163 A
survey of 48 European hospitals (MYSTIC) in 2006 cited
CPR in 42.5% of ABC clinical isolates.164 In the COMPACT
study from 2008 to 2009 in Europe, the Middle East, and
Africa, 49% of ABC isolates were resistant to imipenem.163

Resistance rates were higher in Turkey, Greece, Italy, Spain,
and England (45–85%) compared with France, Germany, and
Sweden (4–20%).163 In one tertiary care hospital in the
United Kingdom, CPR among ABC bloodstream isolates
(BSI) rose from 0% in 1998 to 55% in 2006.111 A survey of
11 countries in Latin America in 2011 found that more than
50% of ABC clinical isolates were CPR.160 In the SENTRY study
of ABC isolates from 2006 to 2009, global CPR rates rose from
34.6% in 2006 to 59.8% in 2009.165 The SMART surveillance
study of urinary tract and IAI ABC isolates from 48 countries
from 2011 to 2014 cited MDR ranging from 47% in North
America to more than 93% in Europe and the Middle East.17

In China, 58% of blood stream isolates of ABC in 2013 were
CPR.112 The SMART surveillance study, comprising 48 coun-
tries from2001 to 2014, evaluated CPR resistance amongABC
isolates from intra-abdominal and UTI.17 The incidence of
MDR-ABC was lowest in North America (47%) and ranged
from 77 to 87% in Africa, Asia, and Latin America, and
exceeded 93% in Europe and the Middle East.17 This extraor-
dinary rate of CPR-ABC reflects selection pressure from
antibiotic usage. The use of CPs has been associated with
increased incidence of CPR-ABC.162,166 In one study, the

prevalence of infections due to MDR-ABC fell 2.24-fold after
implementing a policy of restricting CP use in the ICU.167

Treatment of Infections Due to Acinetobacter
spp.

Nosocomial infections due to ABC have been associated with
high mortality rates (particularly with BSI or VAP).24,34,35

Early appropriate antimicrobial therapy is critical.3,11,35

Optimal therapy for serious ABC infections has not been
established,1 as prospective randomized trials have not been
done. For BSI, removal of invasive devices within 48 hours
may reduce mortality.11 For SSTI or SSIs, debridement is an
essential part of therapy.24 Carbapenems, alone or combined
with a second agent, has been considered thebest therapy for
ABC infections.1,34 However, the emergence of CPR strains
limits the use of these agents as monotherapy for empirical
treatment when CPR is a consideration. We believe a combi-
nation of a carbapenem plus colistin is appropriate as initial
empirical therapy for serious A. baumannii infections when
CPR is suspected.43 Other agents (e.g., β-lactam/β-lactamase
inhibitors, ceftazidime, or FQs) may be used, provided
isolates are susceptible.

Advanced Generation Cephalosporins

Third- and fourth-generation cephalosporins (e.g., ceftazi-
dime, cefepime) are not reliable for empirical treatment of
infections due to ABC. Globally, only 20 to 40% of ABCs are
susceptible to expanded spectrum CEPHS.17 CEPHS should
not be used as empirical treatment for ABC infections, but
may be considered for susceptible strains.

Sulbactam
Among β-lactamase inhibitors, sulbactam has the greatest
bactericidal activity against ABC.1 Ampicillin-sulbactam
(A/S) (due to the sulbactam component) may be effective
therapy for some strains of ABC.168 High-dose A/S and
extended time of infusion may enhance bactericidal
activity.169 Clinical data supporting the use of sulbactam
are limited to small series.168,170 Sulbactam may display
synergy against ABC when combined with other antibiotics
(e.g., CP, colistin).171

Fluoroquinolones
Fluoroquinolones may be active against some strains of ABC,
but globally, fewer than 30% of ABCs are susceptible to FQs.17

FQ resistance can emerge via mutations in the quinolone
resistance determining regions (QRDR) of gyrA and parC
genes and/or by overexpression of efflux pumps.69

Aminoglycosides
Aminoglycoside resistance among ABCs may emerge via the
production of aminoglycoside-modifying enzymes, 16S
ribosomal RNA methyltransferase (ArmA), or efflux pumps.1

In one French study, increased use of amikacin was associat-
ed with emergence of amikacin-resistant ABC; decreased
amikacin use led to a decrease in case incidence.172 The
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activity of aminoglycosides against ABC is variable, but
resistance rates exceed 60% in most countries.173

See►Table 2 for summary of antimicrobial resistance mech-
anisms among Acinetobacter spp.

Treatment of Infections Due to Acinetobacter
spp.

In view of the high incidence of MDR-ABC, initial empirical
therapywith combination therapy (typically CP plus colistin)
is often employed while awaiting antimicrobial susceptibili-
ty results. Optimal therapy is not clear, as randomized,
controlled studies are lacking. In the next sections, we will
discuss antibiotics that are often used either asmonotherapy
or part of combination therapy for MDR-ABC.

Polymyxins (Colistin)
Polymyxins (e.g., polymyxin B and polymyxin E [colistin]) are
cationic lipopeptides that disrupt the outer membrane of
gram-negative bacteria and are rapidly bactericidal.155 Poly-
myxins are usually highly active against MDR-ABC, including
isolates resistant to tigecycline.1 Colistin is administered
intravenously as an inactive prodrug (colistimethate sodium
[CMS]), whereas polymyxin B is an active drug. CMS is widely
available, whereas polymyxin B is infrequently used. Resis-
tance rates to colistin are generally low (< 1%),174 but colistin
resistance among ABCs has been increasing.155,175 In a survey
of 514 ABC isolates from 65 sites in the United States and
Puerto Rico in 2010, 5% of isolateswere resistant to colistin.159

Colistin can be administered by intravenous (IV) or
inhaled routes.1 IV colistin has potential renal toxicity1 and
neurotoxicity (principally paresthesias).1 Risk factors for
nephrotoxicity include colistin dose > 5 mg/kg/day ideal
body weight176 and concomitant use of rifampicin or neph-
rotoxins.176 Optimal dosing regimens for IV colistin have not
been established.1,177 Colistin exhibits a concentration-
dependent bactericidal activity; therapeutic effect depends
on the ratio of peak serum concentration to minimum
inhibitory concentration (MIC) or the ratio of the area under
the curve (AUC) to MIC.1 Strategies involving higher doses,
longer dosing intervals, loading doses, extended infusions,
and pharmacokinetic/pharmacodynamic (PK/PD) principles
have been proposed to optimize efficacy and prevent the
development of resistance.178–180 However, colistin has rel-
atively poor PK/PD properties, and it may be difficult to
achieve high enough serum concentrations quickly.155 CMS
(a prodrug) has to be converted to the active form (colistin) in
the plasma, and concentrations may be suboptimal for 2 to
3 days until a steady state is achieved; thus, a loading dose is
recommended.1 One in vitro study suggested that achieve-
ment of serum levels more than 1 mg/L within 1 hour had
significant bactericidal activity.181

Studies reporting efficacy of colistinmonotherapy for ABC
infections are limited. In a prospective studyof 35 episodes of
VAP due to MDR-ABC, patients were treated with imipenem
(n ¼ 14) versus colistin (n ¼ 21) based on susceptibility
testing.182 Cure rates were 57% in both groups; in-hospital
mortality rates were similar (64 and 62%, respectively). The

Table 2 Common mechanisms of antimicrobial resistance in Acinetobacter spp.

Resistance mechanism Target antimicrobial References

Enzymatic inactivation or modification of antimicrobials

AmpC β-lactamase with upstream insertion of ISAba1 Cephalosporins 1,46,70

Non-carbapenemase oxacillinases (OXA) Penicillins, cephalosporins 1,18,45,68,70

Metallo-β-lactamases (IMP, VIM, SIM, NDM-1) Penicillins, cephalosporins,
carbapenems

1,103,124,130,135,145,150,153

Non-metallo-β-lactamase carbapenemases (OXA, KPC) Penicillins, cephalosporins,
carbapenems, monobactams

1,70,122

Extended-spectrum β � lactamases
(SHV, TEM, PER, VEB, GES, CTX-M)

Penicillins, cephalosporins,
monobactams

1,70,99,101,102,123–125

Aminoglycoside-modifying enzymes (AAC, APH, AAD) Aminoglycosides 1,70

Modification of drug target site

gyrA and parC mutations Fluoroquinolones 1,69,70

Alteration of ribosomal-binding site (RmtB, ArmA) Aminoglycosides 1,70

Altered lipid A of bacterial lipopolysaccharide
(PmrAB two-component system mutation)

Colistin 1,70

Loss of lipopolysaccharide (mutated lpxA, lpxC, lpx D) Colistin 1,70

Altered cell permeability

Porin/outer membrane protein loss Carbapenems, aminoglycosides 70

Efflux pumps

RND efflux pump (AdeABC, AdeFGH, Ade IJK, AbeM) Fluoroquinolones, β-lactams,
aminoglycosides, tetracyclines

1,70
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impact of combination therapy has not been elucidated.
Turkish investigators retrospectively assessed clinical out-
comes in 250 patients with BSI due to extremely resistant
ABC.183 Thirty-six patients received colistin monotherapy;
214 received colistin plus a second agent. All isolates were
susceptible to colistin. In-hospital mortality was lower in the
combination group compared with monotherapy group
(52.3 vs. 72.2%, p ¼ 0.03) and rate of microbiological eradi-
cationwas higher in the combination therapy comparedwith
monotherapy (79.9 vs. 55.6%, p ¼ 0.001). By multivariate
analysis, Pitt bacteremia score, age, and duration of ICU stay
were independent predictors of 14-day mortality. An obser-
vational study of 28 Spanish hospitals assessed 30-day
mortality rates among 101 patients with serious infections
due to MDR-ABC.184 Pneumonia was present in 50.5%. Sixty-
eight patients received monotherapy (MT) (usually a CP or
colistin); 33 received combination therapy (CT). Thirty-day
mortality rates were similar (23.5% for MT; 24.2% for CT;
p ¼ 0.94). Another observational study reviewed 69 organ
transplant recipients either colonized (n ¼ 28) or infected
(n ¼ 41) with XDR A. baumannii.185 Among 41 patients with
infections, 37 received antimicrobial therapy. Clinical suc-
cess at 28 days was achieved in 18/37 (49%), but clinical
recurrence developed within 3 months in 8 of 18 (44%)
within 3 months. Further, colistin resistance developed in
5 of 14 patients. The use of combination therapywith colistin
and a carbapenem was an independent predictor of surviv-
al.185 These various retrospective studies are inadequate to
assess the role or benefit (if any) of combination therapy or
the optimal agents to use for serious infections due to ABC.

Aerosolized (inhaled) colistin has been used in patients
with cystic fibrosis and as adjunctive therapy for nosocomial
pneumonia due to ABC, but data are limited to nonrandom-
ized, retrospective studies.1,186 One randomized open-label
trial compared the efficacy of nebulized CMS (plus IV colistin)
for 100 patients with gram-negative VAP, 60% of which were
due to ABC. Microbiological outcome was better with nebu-
lized plus IV therapy (60.9%) compared with 38.2% among IV
CMS only group (p ¼ � 0.03). Importantly, clinical outcomes
were similar (51.0 vs. 53.1%, p ¼ 0.94). Further, there were
more episodes of bronchospasm in the nebulized plus IV
therapygroup (7.8 vs. 2.0%, respectively, p ¼ 0.36). The clinical
benefit of nebulizedCMSto treatVAPhasnot beenestablished.

Resistance to colistin may develop.185 Plasmid-mediated
resistance via mcr-1 gene among Enterobacteriaceaewas first
reported China,187 and human cases of E. coli or Enterobacter-
iaceae expressing mcr-1 were described shortly thereafter in
Switzerland,188,189 Canada,190 and Singapore.191 The mcr-1
gene has not yet been identified in Acinetobacter spp., but it is
feasible that in time, MDR Acinetobacter could acquire this
resistance mechanism. Colistin heteroresistance may also
occur.155 Colistin-resistant ABCs appear to have reduced fit-
ness and less virulence,192 including a decreased ability to
form biofilms.193

Tigecycline
Tigecycline, a semisynthetic derivative of minocycline, has
excellent in vitro activity against MDR-ABC (including CPR

strains).194,195 However, clinical studies assessing efficacy of
tigecycline for serious ABC infections are limited. Favorable
clinical responses have been cited with tigecycline (alone or
in combination with colistin) in some patients with MDR-
ABC infections,1,196 but large, randomized trials are lacking.
In one retrospective study, 266 patients with XDR-ABC
infections treated with tigecycline alone or combined with
other agents (i.e., CP, extended-spectrum CEPH, or piperacil-
lin-tazobactam) were compared with 120 patients who
received imipenem plus sulbactam to treat XDR-ABC.197 All
isolates were resistant to all antibiotics tested except tigecy-
cline and colistin. Thirty-day mortality rates were similar
(44.7 and 46.7%) between the groups. A prospective multi-
center phase III trial cited lower cure rates in patients with
ABC-VAP treated with tigecycline (68% cure) compared with
imipenem (78% cure).198Overallmortality rateswere similar
with tigecycline (14.2%) and imipenem (12.2%). A retrospec-
tive study of adults with pneumonia in the ICU due to MDR-
ABCmatched 84 patients receiving tigecycline to 84 patients
receiving colistin.199 Mortality was higher (60.7%) among
patients receiving tigecycline compared with colistin
(44% mortality, p ¼ 0.04). This excess mortality was signifi-
cant only for thosewithMIC greater than 2 µg/mL.199 Ye et al
retrospectively analyzed 168 hospitalized ICU patients with
pneumonia due to ABC treated with either sulbactam or
ampicillin/sulbactam (n ¼ 84) to patients treated with tige-
cycline (n ¼ 84).200 Clinical responses (66.7% for each group)
and mortality rates were similar (17.9% with sulbactam,
25.0% with tigecycline; p ¼ 0.26). Microbiological eradica-
tion was achieved more often with sulbactam
(63.5 vs. 33.3%).

Tigecycline achieves low peak serum concentrations
(< 0.8 mg/L) after a standard 100 mg loading dose,1 a
concentration below the MIC of many ABC isolates. Resis-
tance to tigecycline may develop even while on therapy,194

and persistence of infection (with or without resistance)may
occur.1 Efficacy of tigecycline for BSI due to ABC therefore
cannot be assured. Importantly, tigecycline has been associ-
ated with an increased risk of death when studied against
comparator antibiotics, especially among patients with hos-
pital-acquired pneumonia (HAP).201 Higher doses of tigecy-
cline (75–100 mg twice daily) have been recommended by
some investigators,43 but randomized trials have not been
done. Given the aforementioned limitations, we do not
recommend tigecycline monotherapy to treat serious ABC
infections.

Eravacycline
Eravacycline is a novel fluorocycline of the tetracycline class
with broad-spectrum activity against gram-negative and
gram-positive aerobic and anaerobic pathogens.202 Like
tigecycline, eravacycline is not affected by many of the
tetracycline-specific resistance mechanisms found in
gram-negative bacteria, including acquired efflux systems
and ribosomal protection.202 Eravacycline is two- to fourfold
more active (reduced MIC90) than tigecycline versus A.
baumannii.203Whether this increased in vitro activity trans-
lates into greater clinical efficacy is not known.
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Other Antimicrobial Agents

Rifampin
Rifampin exhibits activity against MDR-ABC in vitro and in
animal models.1 In animal models, the combination of
rifampin plus colistin may confer additive or synergic bacte-
ricidal activity.1 However, in two randomized trials of
serious MDR-ABC infections, the combination of rifampin
plus colistin was no better than colistin alone.204,205 The role
of rifampin as part of combination therapy has not been
established.

Other Combination Therapy Using Colistin

Combination therapy has been studied to treat MDR-ABC,
particularly with colistin as part of the combina-
tion.171,183–185,206 In vitro studies have shown that synergy
may be achieved with combinations of colistin, carbape-
nems, and rifampicin, in both colistin-S and colistin-R strains
of Acinetobacter spp.207,208 In a retrospective multicenter
study, Batirel et al evaluated 250 BSIs due to extremely drug
resistant (XDR)-ABC (all isolates were susceptible to colis-
tin).183 Groups included colistin monotherapy (n ¼ 36);
colistin þ CP (n ¼ 102); colistin þ sulbactam (n ¼ 69);
and colistin þ other agents (n ¼ 43). Complete response
rates, 14-day and in-hospital survival, and microbiologic
eradication were significantly higher in the combination
group, but no differences could be seen between the various
combinations.183 A multicenter prospective observational
study in Spain of 101 patients with MDR-ABC infections
demonstrated no significant difference in 30-day mortality
between combination therapy with colistin versus mono-
therapywith various agents, predominantly a CP.184 Cheng et
al prospectively studied 176 episodes of bacteremia due to
XDR-A. baumannii in three hospitals in Taiwan.206 Among
infections with tigecycline MIC > 2 mg/L, combination ther-
apy with colistin plus tigecycline was associated with signif-
icantly higher 14-day mortality and more breakthrough
bacteremias compared with colistin plus CP.206

The addition of glycopeptides (agents with gram-positive
activity) to colistin has displayed synergy against ABC in
vitro.155 However, clinical studies are limited, and data are
conflicting.209,210

Novel Agents

It is obvious that new agents are needed to treat ABC
infections. Anti-GNB compounds that belong to old classes
of agents such as β-lactams, CPs, FQs, and β-lactamase
inhibitors are in development, as are novel classes.211–214

Ceftazidime/avibactam contains an older third-generation
CEPH (i.e., ceftazidime), with avibactam, a synthetic non–β-
lactam, β-lactamase inhibitor that inhibits the activities of
Ambler class A and C β-lactamases and some Ambler class D
enzymes.215–217 Limited data suggest that the addition of
avibactam does not improve the activity of ceftazidime
against Acinetobacter spp.215 Ceftolozane is a novel cephalo-
sporin with a chemical structure similar to that of ceftazi-

dime, with the exception of a modified side chain at the
three-position of the cephem nucleus, which confers potent
antipseudomonal activity.217,218 The addition of tazobactam
extends the activity of ceftolozane to include most ESBL
producers as well as some anaerobic species.218 Limited
data suggest that ceftolozane/tazobactam is 8- to 16-fold
more active than ceftazidime versus A. baumannii.218

Whether this increased in vitro activity translates into
greater clinical efficacy is not known.

Plazomicin is a next-generation aminoglycoside that
was synthetically derived from sisomicin.219 Plazomicin
demonstrates activity against both gram-negative and
gram-positive bacterial pathogens, including isolates har-
boring all clinically relevant aminoglycoside-modifying
enzymes.212,216,219 Limited data suggest that plazomicin
demonstrates approximately eightfold more active than
gentamicin versus A. baumannii.220 Whether this
increased in vitro activity translates into greater clinical
efficacy is not known.

Among the new classes of antimicrobials, bis-indole com-
pounds inhibit DNA and RNA synthesis and some have had
very good in vitro activity against MDR ABC.221 Applying
structure-based drug design, pyrrolopyrimidine agents were
developed that inhibit both of the bacterial topoisomerases
(DNA gyrase and topoisomerase IV) of GNB including ABC,
Pseudomonas aeruginosa, and E. coli.222 Antimicrobial
peptides, naturally occurring molecules of the innate im-
mune systems of all types of living organisms, are potential
new treatments for MDR organisms.223 Some of these,
including melittin, indolicidin, and mastoparan, exhibit ac-
tivity against colistin-susceptible and colistin-resistant ABC
isolates in vitro.224

Prevention

Hospital outbreaks of Acinetobacter infections may reflect
environmental contamination24,66,225–227 or carriage of A.
baumannii on the hands of health care workers.66 Aggressive
infection-control measures including identifying sources of
transmission,67,225 environmental cleaning, contact precau-
tions, and hand hygiene and isolating or cohorting infected
and colonized patients66,228 may be critical to stop or
prevent outbreaks. In one study, daily chlorhexidine baths
in ICU patients reduced the development VAP due to
Acinetobacter.229

Conclusion

The dramatic global rise of antimicrobial resistance among
ABCs reflects acquisition of novel resistance elements and
spread via a few international clones. Many isolates are
resistant to all antimicrobials except colistin, and some
infections are untreatable with existing agents. Novel
approaches including combinations of agents and extended
infusion times may be required to optimize therapy.
Appropriate use of antimicrobials and infection-control
measures are critical to minimize antimicrobial
resistance.43,66
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