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ABSTRACT

The wide chemical diversity of natural products has chal-

lenged analysts all over the world and has been a driving force

for the development of innovative technologies since de-

cades. In the last years, supercritical fluid chromatography

(SFC) has finally emerged from the shadow of liquid chroma-

tography (LC) and gas chromatography (GC) and has become

a powerful tool in modern natural product analysis. Whereas

in the past the technique had mainly been restricted to a small

group of nonpolar compounds, it has largely expanded its

suitability in the last years and has demonstrated possibilities

without boundaries. This mini-review, focused on the latest

applications, provides a brief update on the current status of

SFC in natural product analysis with the aim to demonstrate

its applicability for both polar and nonpolar plant constitu-

ents. The approaches cover the whole range of polarity, in-

cluding carotenoids, flavonoids, water-unstable ginkgolides,

and even highly polar triterpene saponins with several sugar

residues.

Supercritical Fluid Chromatography in Natural Product Analysis –
An Update

Mini Reviews
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ABBREVIATIONS

APCI atmospheric pressure chemical ionization

BPR backpressure regulator

DAD diode-array detector

DEA diethylamine

ESI electrospray ionization

LOQ limit of quantitation

RP-HPLC reversed-phase HPLC

SFC supercritical fluid chromatography

SFE supercritical fluid extraction

UHPLC ultra-high performance liquid chromatography

UHPSFC ultra-high performance supercritical

chromatography
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Introduction
Already developed more than 50 years ago, SFC was overshad-
owed by LC and GC for a long time [1]. It was mainly criticized for
its weak UV sensitivity, poor quantitative performance, and lim-
ited reliability. In the last decade, the introduction of a new gener-
ation of commercially manufactured instruments tackled most of
these limitations, and SFC has developed to a powerful analytical
tool combining advantages of short analysis times and unique se-
lectivity with low operating costs and environmental friendliness
[2, 3].

The wide chemical diversity of natural products has always
challenged analysts. Therefore, the availability of such highly effi-
cient analytical technologies is of tremendous interest [4]. Initial-
ly, the application field of SFC in natural product analysis was rela-
tively modest, focusing mainly on nonpolar compounds [5,6].
However, the technique has largely expanded its suitability and
has become an accepted analytical alternative. As shown in
361



▶ Fig. 1 Range of SFC applications in natural product analysis cate-
gorized by substance classes from 2012 to 2016. Scifinder. Date of
information gathering: May 2017.
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▶ Fig. 1, the range of applications is broadly diversified and ex-
tends from the separation of nonpolar lipids to the analysis of
highly polar triterpene saponins with several sugar residues [3,4,
7, 8].

The number of publications dealing with the application of SFC
for natural product analysis is increasing steadily (▶ Fig. 2), dem-
onstrating its potential as complementary alternative to other
well-established techniques as (U)HPLC or GC. These remarkable
advances since the last review [7], enlightening the role of SFC in
plant analysis, motivated us to present a brief update focusing on
applications of the last two years.
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Theoretical Background and
Instrumentation

SFC operation is based on the use of a supercritical fluid as mobile
phase. The supercritical condition is obtained whenever pressure
and temperature of a gas or a liquid exceed their critical values
[9]. In this state, features of both, the liquid and the gaseous state,
are connected in a unique way: high dissolving capabilities and
densities like a liquid are paired with low viscosity and high diffu-
sivity of a gas [10,11].

Nowadays, supercritical CO2 is most widely used, because its
critical values (31 °C and 74 bar) are easily attainable and it is inert,
nontoxic, readily available, and cheap. Additionally, it is also an en-
vironmental friendly alternative to the standard organic solvents
[10,12]. Supercritical CO2 is a highly lipophilic solvent with a po-
larity similar to hydrocarbons [13]. Therefore, SFC is often incor-
rectly considered as a normal phase system [14]. Analysis of more
polar solutes requires the addition of an organic modifier (primar-
ily an alcohol) [15,16]. This modification causes an increase of the
critical point with the consequence that most separations do not
occur under supercritical but rather under so-called subcritical
conditions. Due to the fact that both states have comparable
362
characteristics, it is not of particular importance for the operator
[17,18].

The introduction of modern state-of-the art instruments (also
called UHPSFC) by several manufacturers was the major driving
force for the renewed interest in SFC in recent years [2]. Although
these innovative systems are largely based on UHPLC technology,
the use of a supercritical fluid as mobile phase requires several im-
portant setup adaptations [18]: a BPR is required to enable accu-
rate control of the pressure and an adapted pumping system to
fulfil the mobile phase characteristics [13]. Modern instruments
benefit from an optimized BPR device that not only reduces pres-
sure variations during analysis but also ensures quicker adapta-
tions to changes in flow rate and mobile phase composition [19].
Revised CO2 delivery systems, guaranteeing adequate cooling of
the incoming CO2 to insure its liquid state, are another key factor
for the new, reliable SFC performance [13,18]. In addition, the
new instruments include lower injection volumes, reduced void
volumes to limit band broadening, and higher upper pressure lim-
its [2,19]. Although the pressure limits (400 to 600 bar) are still
quite low compared to UHPLC systems (over 1000 bar), this is
mostly not a limiting factor due to the fact that the much lower
viscosity of CO2-based mobile phases generates only low pressure
drops compared to liquids used in UHPLC [13]. Nearly all station-
ary phases and column designs tailored for HPLC, including col-
umns packed with sub-2-μm and core-shell particles, are suitable
for SFC as well [19–23]. Recently, the ongoing interest in SFC as a
potent analytical technique led to an increasing availability of sta-
tionary phases specifically designed for SFC use [22]. Modern SFC
systems are compatible with a wide range of different detectors,
including MS, evaporative light scattering detector, and DAD [13,
24]. The latter was often criticized for its low sensitivity, largely
attributed to density and refraction index changes, caused by
pressure oscillations. This pressure-induced UV noise was another
factor that could be significantly improved by the introduction of
the modernized BPR devices [19,25]. Beside DAD detection, the
hyphenation of SFC to MS is continuously growing in importance.
While in the past APCI was considered as prevailing ionization
source, ESI gained in popularity in the last years [26].

Among these technical improvements also the recent intro-
duction of a fully automated system, combining online SFE and
SFC with MS detection in a single flow path, is of great interest
for natural product analysis. The addition of polar organic solvents
to the supercritical CO2 allows the extraction and simultaneous
analysis of compounds with a wide range of polarities and makes
it to an interesting future approach [27,28].

More information about the theoretical background, instru-
mentation, practical approaches, and different applications are
available in recent publications [6,9, 13,18,22,29–32].
Applications on Natural Products
For a long time, SFC analysis focused on nonpolar plant ingre-
dients like lipids and carotenoids. In the last years, an increasing
interest in the often underestimated potential of SFC for analysis
of polar compounds could be observed. The following section,
categorized by substance classes, gives an overview of recent
SFC applications on natural product analysis with the aim to dem-
Gibitz Eisath N et al. Supercritical Fluid Chromatography… Planta Med 2018; 84: 361–371



▶ Fig. 2 Number of publications per year in the field of SFC in general and of SFC in natural product analysis over the last 10 years. Source: Scifinder.
Date of information gathering: May 2017.
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onstrate its wide applicability for both polar and nonpolar plant
constituents. Some selected applications including detailed con-
ditions are listed in ▶ Table 1.

Lipids

Since its introduction, SFC has consequently conquered lipid anal-
ysis as one of its major application fields. A vast number of studies
focused on the qualitative or quantitative determination of those
important food ingredients. Some recent reviews provide an ex-
cellent overview of SFC analysis in this field, from the beginnings
to the current state including up-to-date applications; recent ad-
vances in lipid analysis will therefore not be further discussed [3,
33–37].

Carotenoids

The use of SFC for the separation of carotenoids was already men-
tioned in 1968 [38]. Since then, a large number of papers was
published, which emphasizes the important role of SFC as an al-
ternative analysis technique in this sector [36]. There are different
forms of carotenoids: free carotenoids and more stable forms, es-
terified with fatty acids [39]. To release all esters and to simplify
the analysis, most of the investigations were performed after a
saponification step [40]. Two recent applications are worth men-
tioning as this simplification was avoided to prevent artifact for-
mation and to preserve all information on the natural carotenoid
profile.

Bonaccorsi et al. [39] identified more than 100 different com-
pounds belonging to chlorophylls, free carotenes, free xantho-
phylls, and xanthophyll mono- and diesters in sweet bell peppers
through the offline coupling of SFC and LC. The first dimension
was performed on a SFC system using an Acquity UPC² HSS C18

SB column and ethanol as modifier, while the second dimension
consisted of a RP-HPLC combined with DAD and MS detection
and was performed on a C30 stationary phase. The high ortho-
gonality of SFC and HPLC clearly enhanced the separation power
and facilitated the rapid quantitation as well as stability studies
of carotenoids in overripe yellow and red bell peppers.
Gibitz Eisath N et al. Supercritical Fluid Chromatography… Planta Med 2018; 84: 361–371
Cleavage of a fragment from the usual carotenoid structure
leads to the formation of apocarotenoids. Giuffrida et al. [41] de-
veloped the first SFC/MS method for the determination of native
apocarotenoids in red habanero pepper, the hottest pepper in the
world. Twenty-five apocarotenoids (14 free apocarotenoids and
11 apocarotenoids fatty acid esters) were separated on a novel
fused-core C30 column with methanol as modifier in less than
5min. The compounds were detected by selective ion monitoring
in the negative mode utilizing a triple quadrupole mass spectrom-
eter and an APCI interface. Identity was further confirmed by se-
lective reaction monitoring in positive and negative ionization
mode.

Terpenes

Terpenes are a wide-spread group of plant constituents of large
chemical diversity. While early investigations were mainly focused
on lipophilic terpenes, lately interest in more polar compounds
has increased. Particularly noteworthy in this context is a publica-
tion by Huang et al. demonstrating the potential of SFC/MS for
the analysis of triterpene saponins [42]. Nine kudinosides, six
stauntosides, or 11 ginsenosides could be well resolved on a ZOR-
BAX RX‑SIL column within 10min with slightly different parame-
ters. As shown in ▶ Fig. 3, addition of 5% or 10% water to metha-
nol as modifier was mandatory in all cases to improve resolution
and reduce analysis time; 0.05% formic acid was added to en-
hance ionization. The methods were successfully applied to the
analysis of kudinosides in Ilex latifolia, and ginsenosides in Panax
quinquefolius and Panax ginseng.

Twenty years after the first SFC study on Ginkgo biloba, interest
has recently been rekindled [43]. Ginkgolic acids and terpene lac-
tones were determined in extracts and dietary supplements using
an Acquity UPC2 BEH 2-EP column and a mixture of isopropanol/
methanol (50 :50 v/v) with 10mmol ammonium acetate as modi-
fier [44]. Quantitation of low concentrations of both ginkgolic
acid (LOQs < 100 ng/mL) and terpene lactones (LOQs < 1 μg/mL)
could be achieved by single quadrupole MS detection. The devel-
oped method might be an alternative to existing methods with
363



▶ Table 1 Selected SFC applications in the analysis of natural products, categorized by substance classes.

Compounds Plant species Stationary phase Analytical conditions Detection Quant. Ref.

Carotenoids

Apocarotenoids Red habanero
pepper

Ascentis Express C30
(4.6 × 150mm,
2.7 μm)

A: CO2, B: MeOH
Gradient elution mode, 2mL/
min, 35 °C, 150 bar

MS (APCI) ✓ [41]

Carotenoids Chlorella sp.
Scenedesmus sp.
Rosehip

Torus 1-AA
(3.0 × 100mm,
1.7 μm)

A: CO2, B: MeOH
Gradient elution mode, 2mL/
min, 35 °C, 160 bar

DAD/MS
(ESI)

✓ [69]

Carotenoids Dietary supple-
ments

Acquity UPC2 HSS
C18 SB (3.0 ×
150mm, 1.8 μm)

A: CO2, B: MeOH/EtOH (1 :2 v/v)
Gradient elution mode, 1.8 mL/
min, 35 °C, 152 bar

DAD ✓ [70]

Terpenes

Terpene lactone
and ginkgolic
acids

Gingko biloba Acquity UPC2 BEH
2-EP (3.0 × 150mm,
1.7 μm)

A :CO2, B: 1Ommol ammo-
nium acetate in MeOH/Isopro-
panol (1 :1 v/v)
Gradient elutionmode, 1.4mL/
min, 30 °C, 103 bar

DAD/MS
(ESI)

✓ [44]

Ginkgolides Gingko biloba (n/a) A: CO2, B: 5% water and
10mmol ammonium acetate
in MeOH
Gradient elution mode, 2mL/
min, 40 °C, 200 bar

MS (ESI) ✓ [68]

Kudinosides,
stauntosides, and
ginsenosides

Ilex latifolia, Panax
quinquefolius and
Panax ginseng

ZORBAX RX‑SIL
(4.6 × 150mm,
5 μm)

A: CO2, B: 5–10% water and
0.05% formic acid in MeOH
Gradient elution mode, 3mL/
min, 20 °C, 160 bar

DAD/MS
(ESI)

– [42]

Ginsenoside,
nucleoside, and
nucleobases

Panax ginseng ZORBAX RX‑SIL
(4.6 × 150mm,
5 μm)

A: CO2, B: 5mmol ammonium
acetate in MeOH
Gradient elution mode, 3mL/
min, 35 °C, 160 bar

DAD/MS
(ESI)

– [71]

Diterpenoid acids
(continentalic
acid and kaure-
noic acid)

Aralia continentalis Acquity UPC2 Torus
1-AA (2.1 × 150mm,
1.7 μm)

A: CO2, B: 0.1% formic acid in
MeOH
Isocratic elution mode, 0.6 mL/
min, 40 °C, 138 bar

DAD ✓ [72]

Sesquiterpenes
and other con-
stituents

Matricaria chamo-
milla, Chamaeme-
lum nobile

Acquity UPC2 BEH
2-EP (3.0 × 150mm,
1.7 μm)

A: CO2, B: 0.5% formic acid in
MeOH/Isopropanol (1 :1 v/v)
Gradient elutionmode, 1.7mL/
min, 50 °C, 103 bar

DAD/MS
(ESI)

– [73]

Camphor Tanacetum
parthenium

Acquity UPC2 BEH
2-EP (3.0 × 100mm,
1.7 μm)

A: CO2, B: Isopropanol
Gradient elutionmode, 2.0mL/
min, 50 °C, 138 bar

DAD ✓ [74]

Alkaloids

Indole and oxin-
dole alkaloids

Mitragyna speci-
cosa

Agilent RX‑SIL
(2.1 × 50mm,
1.8 μm)

A: CO2, B: 10mmol ammonium
acetate in MeOH
Gradient elutionmode, 0.5mL/
min, 25 °C, 180 bar

DAD – [46]

Spiro oxindole
alkaloids

Uncaria macro-
phylla

Torus 1-AA
(3.0 × 100mm,
1.7 μm)

A: CO2, B: 0.1% DEA in ACN
Isocratic elution mode, 1.2 mL/
min, 45 °C, 138 bar

DAD – [48]

Torus Diol
(3.0 × 100mm,
1.7 μm)

A: CO2, B: 0.1% ammonium
hydroxide in ACN
Isocratic elution mode, 1.2 mL/
min, 30 °C, 124 bar

Aconitum alka-
loids

Aconitum pendu-
lum

Acquity UPC2 BEH
2-EP (2.1 × 150mm,
1.7 μm)

A: CO2, B: 10mmol ammonium
acetate in MeOH
Gradient elutionmode, 0.8mL/
min, 55 °C, 145 bar

DAD/MS
(ESI)

✓ [49]

contin-
ued
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▶ Table 1 Continued

Compounds Plant species Stationary phase Analytical conditions Detection Quant. Ref.

Sesquiterpene
pyridine alkaloids

Tripterygium
wilfordii

Acquity UPC2 BEH
2-EP (2.1 × 50mm,
1.7 μm)

A: CO2, B: MeOH
Gradient elution mode, 1mL/
min, 45 °C, 138 bar

DAD/MS
(ESI)

– [75]

Indole alkaloids Alstonia scholaris Acquity UPC2 BEH
2-EP (3.0 × 100mm,
1.7 μm)

A: CO2, B: 2mmol ammonium
formate in MeOH
Gradient elutionmode, 1.5mL/
min, 50 °C, 138 bar

MS (ESI) ✓ [67]

Indole alkaloids Evodiae frucuts Acquity UPC2 BEH
(3.0 × 100mm,
1.7 μm)

A: CO2, B: MeOH
Gradient elution mode, 2mL/
min, 35 °C, 207 bar

DAD – [76]

Phenolic compounds

Kavalactons Piper methysticum
(Kava-Kava)

Acquity UPC2 BEH
(3.0 × 100mm,
1.7 μm)

A: CO2, B: 0.6% DEA in MeOH
Gradient elution mode, 1mL/
min, 70 °C, 130 bar

DAD ✓ [56]

Anthraquinones Rhubarb Acquity UPC2 HSS C18

SB (3.0 × 100mm,
1.8 μm)

A: CO2, B: 0.05% DEA in MeOH
Gradient elution mode, 2mL/
min, 30 °C, 150 bar

DAD ✓ [57]

Coumarins Angelica dahurica Acquity UPC2 CSH
Fluoro-Phenyl
(3.0 × 100mm,
1.7 μm)

A: CO2, B: 0.1% DEA in MeOH
Gradient elutionmode, 1.5mL/
min, 30 °C, 130 bar

DAD ✓ [53]

Coumarins Ammi visnaga
fruit

Acquity UPC2 HSS C18

SB (3.0 × 100mm,
1.8 μm)

A: CO2, B: 0.1% DEA in MeOH/
ACN (1 :1 v/v)
Gradient elutionmode, 1.5mL/
min, 30 °C, 140 bar

DAD ✓ [55]

Pyranocumarins Angelica gigas
Nakai

Acquity UPC2 CSH
Fluoro-Phenyl (2.1 ×
150mm, 1.7 μm)

A: CO2, B: EtOH
Isocratic elution mode, 0.6 mL/
min, 35 °C, 138 bar

DAD ✓ [54]

Flavonoids Chrysanthemum
marifolium

ZORBAX RX‑SIL
(4.6 × 150mm,
5 μm)

A: CO2, B: 0.1% phosphoric acid
in MeOH
Gradient elution mode, 3mL/
min, 40 °C, 200 bar

DAD ✓ [51]

Flavonoids Radix astragali Acquity UPC2 CSH
Fluoro-Phenyl
(n/a)

A: CO2, B: MeOH
Gradient elutionmode, 0.5mL/
min, 40 °C, 110 bar

DAD ✓ [52]

Phenolic acids Wine Acquity UPC2 BEH
2-EP (3.0 × 150mm,
1.7 μm)

A: CO2, B: 0.1% TFA in MeOH
Gradient elution mode, 2mL/
min, 55 °C, 130 bar

DAD ✓ [77]

Cannabinoids Cannabis sativa Acquity UPC2 BEH
2-EP (3.0 × 150mm,
1.7 μm)

A: CO2, B: 1% water in Isopro-
panol/ACN (8 :2 v/v)
Gradient elutionmode, 1.4mL/
min, 30 °C, 103 bar

DAD/MS
(ESI)

✓ [58]

Miscellaneous

Curcuminoids Turmeric Acquity UPC2 BEH
(3.0 × 100mm,
1.7 μm)

A: CO2, B: 10mmol oxalic acid
in MeOH
Gradient elutionmode, 0.9mL/
min, 40 °C, 124 bar

DAD – [78]

Destruxins Metarhizium
brunneum

Acquity UPC2 BEH
2-EP (3.0 × 100mm,
1.7 μm)

A: CO2, B: 0.02% TFA in MeOH/
ACN (8 :2 v/v)
Gradient elution mode, 2mL/
min, 60 °C, 140 bar

DAD/MS
(ESI)

✓ [63]

Tocopherols and
tocotrienols

Soybean oil Amine Luna NH2

(2.0 × 150mm,
3 μm)

A: CO2, B: 0.1% formic acid in
EtOH
Gradient elutionmode, 1.5mL/
min, 30 °C, 130 bar

DAD/MS
(APPI)

✓ [79]

contin-
ued
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▶ Table 1 Continued

Compounds Plant species Stationary phase Analytical conditions Detection Quant. Ref.

Vitamine E
isomers

Moringa oleifera
leafs

Acquity UPC2 BEH
2-EP (3.0 × 100mm,
1.7 μm)

A :CO2, B: MeOH/Isopropanol
(1 :1 v/v)
Gradient elutionmode, 1.5mL/
min, 50 °C, 124 bar

DAD ✓ [80]

Goitrin and
epigoitrin

Isatis indigotica (S,S)-Whelk-O 1
(4.6 × 250mm,
10 μm)

A: CO2, B: MeOH
Gradient elution mode, 3mL/
min, 40 °C, 120 bar

DAD/MS
(APCI)

✓ [81]

Aflatoxins Edible oil Acquity UPC2 BEH
2-EP (2.1 × 100mm,
1.8 μm)

A: CO2, B: MeOH
Gradient elutionmode, 1.0mL/
min, 50 °C

MS
(ESI)

✓ [82]

Quant: quantitation; Ref: reference; A and B: mobile phase components; APPI: atmospheric pressure photoionization; TFA: trifluoroacetic acid

▶ Fig. 3 Effect of water content in the mobile phase on the separa-
tion of nine kudinosides from Ilex latifolia leaves. Peak assignment:
1. Kudinoside F, 2. Kudinoside A, 3. Ilekudinoside G, 4. Kudinoside E,
5. Kudinoside C, 6. Kudinoside G, 7. Latifoloside Q, 8. Latifoloside H,
9. Kudinoside O. Reproduced with permission from [42] [rerif].
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the advantage to avoid hydrolysis of ginkgolides that occur during
RP-HPLC with aqueous eluents and without the need for derivati-
zation of the ginkgolic acids as it is necessary prior to GC analysis.

Only recently, Zhu et al. [45] compared the separation of 20
different spirostanol saponins by UHPSFC and UHPLC underlining
the complementarity of both techniques. While UHPSFC showed
to be advantageous for the separation of spirostanol saponins
with the same aglycone and a different sugar residue, UHPLC was
preferable for the resolution of saponins with the same sugar res-
idue and different aglycones. Up to now, no application to real
samples was demonstrated.

Alkaloids

Few applications focused on analysis of alkaloids in the very early
years of SFC; recently reawakened interest in this topic can be ob-
served.
366
The psychoactive plant Mitragyna specicosa and kratom, a
product obtained thereof, are widely used as pain suppressor and
low cost substitute for opioids [46]. Due to the addiction potential
and toxicity in multiple organ system the U.S. Food and Drug Ad-
ministration (FDA) has called for detention of all related products
[47]. Although mitragynine and 7-hydroxymitragynine are the
main psychotropic constituents, other epimeric indole (speciogy-
nine and speciociliatine, which are diastereomeres of mitragynine,
paynantheine and 3-isopaynantheine) and oxindole alkaloids
(corynoxine A and corynoxine B) are present as well. Wang et al.
[46] succeeded in the simultaneous separation of all eight com-
pounds in 7min using an Agilent RX‑SIL column and a mixture of
CO2 and methanol containing 10mmol ammonium acetate as
mobile phase. SFC method provided faster separation and superi-
or resolution compared to both UHPLC and GC method. Similar
alkaloids were also in the focus of another study: Yang et al. [48]
resolved two pairs of 7-epimeric oxindole alkaloids (rhynchophyl-
line and isorhynchophylline, corynoxine A and corynoxine B) from
Uncaria macrophylla on a Torus 1-AA column as well as on a Torus
Diol column. Acetonitrile (containing 0.1% DEA or 0.1% ammo-
nium hydroxide) was chosen as modifier, because of its ability to
suppress the epimeric interconversion of these analytes longer
than other modifiers. Scaled up to preparative SFC, all four alka-
loids were isolated with purities higher than 95%.

Due to the extraordinary toxicity of Aconitum alkaloids, highly
sensitive and reliable analytical methods are mandatory for an
adequate risk assessment. In a recent publication, separation of
five alkaloids in Aconitum pendulum extracts was obtained on an
Acquity UPC2 BEH 2-EP column [49]. Short runtime (3min), excel-
lent validation results (recovery rates from 92.3 to 101.2%), and
LOQ values between 0.03 and 0.08 ng/mL obtained with an MS
detector in the positive ESI mode, indicated that SFC systems can
easily keep up with other techniques.

The separation of the amine alkaloids in Piper longum was
reached through the offline coupling of SFC and UHPLC [50]. The
first dimension was performed on a SFC system using a XAmide
column and methanol as modifier. The manually collected, dried
fractions were re-dissolved and subsequently analyzed on a
UHPLC system and an HSS T3 column (second dimension). Due
to the high orthogonality of both systems, not only separation
Gibitz Eisath N et al. Supercritical Fluid Chromatography… Planta Med 2018; 84: 361–371



▶ Fig. 4 Separation of the 12 flavonoids in both SFC and HPLC
modes. Peak assignment: 1. Kaempferide, 2. Baicalein, 3. Kaemp-
ferol, 4. Luteolin, 5. Quercetin, 6. Morin, 7. Myricetin, 8. Baicalin,
9. Hyperoside, 10. Luteoloside, 11. Myricitrine, 12. Buddleoside.
Reproduced with permission from [51] [rerif].
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power was increased, but also the detection of low contained
compounds, which were overshadowed in the one-dimensional
separation, was achieved.

Phenolic compounds

The frequent occurrence and biological activity render phenolic
compounds to one of the most interesting ingredients in plant
kingdom. In the last few years an increasing number of analytical
applications were investigated focusing on flavonoids [51,52],
coumarins [53–55], kavalactones [56], anthraquinones [57], and
cannabinoids [58].

Huang et al. [51] presented very recently a first SFC‑DAD‑UV
method for the analysis of 12 flavonoids, among them flavones,
flavanols, as well as mono- und diglycosides. Baseline separation
was achieved using a ZORBAX RX‑SIL column (4.6 × 150mm,
5 μm) and 0.1% phosphoric acid in methanol as modifier at a col-
umn temperature of 40 °C and an outlet pressure of 200 bar. The
authors compared their SFC method with HPLC analysis of the
standard compounds utilizing a ZORBAX SB‑C18 column with the
same dimensions and particle size. Whereas the SFC analysis took
18min, 55min were necessary to obtain baseline separation by
HPLC (▶ Fig. 4). The SFC method was subsequently validated for
five representative congeners (limits of quantitation from 2.19 to
5.86 μg/mL, recoveries between 100.2% and 104.1%, precision
better than 2.4% for aglyca and 4.6% for glycosides) and applied
to the quantitative analysis of hydroethanolic extracts of Chrysan-
themum marifolium.

A few SFC methods have been published up to now for the de-
termination of coumarins. Pfeifer et al. [53] presented a validated
SFC‑DAD‑UV method for the determination of eight congeners in
Angelica dahurica roots, Kim et al. [54] resolved two pyranocumar-
ins in Angelica gigas roots, and Winderl et al. [55] succeeded in the
first complete separation of all coumarins in Ammi visnaga fruit.
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The first report on the successful separation of anthraquinones
has been published as well [57]. Five anthraquinones (chrysopha-
nol, physcion, emodin, aloeemodin, and rhein) could be resolved
in less than 5min on an Acquity UPC2 HSS C18 SB column using
methanol with 0.05% DEA as modifier and DAD detection. The
method was validated (LOQs < 1.34 μg/mL, recovery rates be-
tween 95.4% and 103.1%, precision better than 6.92%) and suc-
cessfully applied to the analysis of rhubarb extracts.

Cannabis has been used for centuries due to its manifold me-
dicinal properties but was banned as one of the most popular ille-
gal recreational drugs worldwide [59]. Whereas analysis of its con-
stituents was mainly of interest in body fluids and hair samples to
prove drug abuse for many years, the situation has changed dras-
tically as marijuana–and not only Δ9-THC–has recently been
brought into medicinal use in several countries. Due to this
changed situation, reliable standardization and quality control is
badly needed [60]. Wang et al. [58] presented very recently a
promising SFC‑DAD/UV‑MS method for the quantitative determi-
nation of nine of the most abundant cannabinoids. Separation
was achieved within 11min using isopropanol/acetonitrile
(80 :20 v/v) with 1% water as modifier and a BEH 2-EP column
with sub-2-μm particles. Specificity was proved by MS detection,
LOQs were reported as 5 μg/mL for acidic and 10 μg/mL for neu-
tral cannabinoids, recoveries ranged from 96.1 to 107.6%, and the
overall precision was better than 7.6%. The method was applied
to the analysis of 30 cannabis and hashish samples (acetonitrile/
methanol extracts [80 :20 v/v]). The results were in good agree-
ment with a standard UHPLC method (variations ± 13.0%). The
SFC‑DAD/UV‑MS method might be an alternative to existing
methods with the advantage of orthogonality to UHPLC, increas-
ing the power of identification of congeners in complex matrices,
and without the need for decarboxylation or derivatization as it is
necessary prior to GC analysis.

Murauer et al. [56] developed a fast and validated method for
the determination of all major lactones in Piper methysticum, a
plant that was long considered as an herbal alternative to syn-
thetic anxiolytics but banned from the market due to assumed
hepatotoxicity in 2002. Baseline separation was obtained in less
than 4min using an Acquity UPC2 BEH column and a mixture of
CO2 and methanol with DEA as mobile phase. With 70 °C a rather
high column temperature, already 10°C above the recommended
maximum by the column manufacturer was selected, because
only under these conditions baseline separation of kavain and
yangonin was possible.

Recently, a supercritical based protocol for the extraction,
analysis, and isolation of six polar compounds (o-vanillin, styracin,
vanillin, trans-cinnamic acid, vanillic acid, and shikimic acid) from
Styrax, an exudate from various Liquidambar trees, has been pub-
lished [61]. A mixture of supercritical CO2 and ethanol (1 : 1) was
used for the extraction. The generated extracts were resolved on
an Acquity UPC2 BEH 2-EP column using 0.1% phosphoric acid in
methanol as modifier. Scaled up to preparative SFC, styracin and
trans-cinnamic acid were isolated on a Viridis BEH 2-EP column in
only 7min. Compared to conventional workflows, the author de-
scribed supercritical based methods as a cheap, time-saving, and
environmentally friendly alternative that will gain in value in the
future.
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▶ Fig. 5 Representative UHPSFC‑PDA chromatogram of a Metarhizium brunneum DCM crude extract and a destruxine standard mixture containing
dtx A, B, D, E, and E-diol. Reproduced with permission from [63].
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Miscellaneous

Cyclic hexadepsipeptides, known as destruxins, are produced by
the fungus Metarhizium brunneum, which is used as a pest control
agent [62]. Due to concerns that this use entails risks to humans
and the environment, the development of validated analysis
methods is of great interest. Optimum resolution was obtained
on an Acquity UPC² BEH 2-EP column with a mixture of supercrit-
ical CO2 and methanol/acetonitrile (8 : 2 v/v) containing 0.02% tri-
fluoroacetic acid as the mobile phase [63]. As shown in ▶ Fig. 5,
17 analytes were separated within 4min. Five of them were iden-
tified using reference material, while the other eight were identi-
fied by MS. Compared to established UHPLC method, SFC is char-
acterized by shorter analysis time, rapid equilibration, higher
throughput and low operation costs, but has the disadvantage of
4–26 times lower sensitivity. According to the authors, this may
be explained by the lower injection volume on one hand and the
lower sensitivity of SFC‑UV compared to HPLC‑UV on the other
hand.

Recently, Grand-Guillaume Perrenoud et al. [64] highlighted
the versatility of SFC for natural product analysis. A set of 120
highly diverse natural compounds (alkaloids, organic acids, flavo-
noids, cardioglycosides, etc.) were selected for a systematic col-
umn screening on 15 different stationary phases applying identi-
cal elution parameters (CO2 and MeOH with 10mmol ammonium
formate and 2% water). The SFC system was coupled to a Q‑ToF
mass spectrometer operated in both positive and negative modes
with ethanol as make-up liquid. According to their results, the
method is suitable for almost 90% of the tested compounds.
Three stationary phases (Diol, not end-capped C18 and 2-EP)
showed to be appropriate for wide-range usage. To prove this,
dichloromethane and methanol extracts from white willow and
yerba mate were analyzed on these three columns under the pre-
viously mentioned conditions. The obtained metabolite profiles
showed the ability of the developed method for the analysis of
both complex polar and nonpolar plant extracts.
368
Establishing a pharmacokinetic study of a natural product is
challenging. Due to the low concentration, complex matrices and
wide range of active ingredients, appropriate sensitive and selec-
tive analytical methods are indispensable [65]. In comparison to
LC‑MS, the method of choice for most approaches, SFC is still in
its infancy and the number of publications is meagre [66]. There-
fore, the following two approaches are noteworthy, as they under-
line the auspicious potential of SFC in this sector that will surely
gain in value in the future.

The four indole alkaloids scholarisine, 19-epischolarisine, val-
lesamine, and picrinine are described as the major bioactive com-
pounds in Alstonia scholaris, a widely distributed folk medicinal
plant in Asia and Africa, used for the treatment of chronic pulmo-
nary diseases. Although commercial formulations (Dengtaiye tab-
lets, DTY) are available, their pharmacokinetic profile is still poorly
explored and in vivo studies are missing. Recently, Yang et al. [67]
developed a SFC/MS‑MS method for the simultaneous quantita-
tion of these four compounds in rat plasma using an Acquity UP-
C2 BEH 2-EP column with 2mmol ammonium formate in metha-
nol as modifier. The method was subsequently validated (LOQs
50 pg/mL, recoveries between 84.47 and 95.22%, precision in
the range from 1.42 to 12.85%) and applied to a pharmacokinetic
study in rats after oral administration of 108mg/kg Dengtaiye
tablets.

The second pharmacokinetic study focused on the simulta-
neous monitoring of three ginkgolides and their six hydrolyzed
metabolites in rat plasma after intravenous administration of the
total ginkgolide extract [68]. Methanol with 5% water and
10mmol ammonium acetate was used as modifier and a triple
quadrupole MS for detection. The use of supercritical CO2 is favor-
able as it avoids spontaneous hydrolysis of ginkgolides during
analysis and allows an accurate characterization of the naturally
occurring metabolites. As authentic standards for the ginkgolides
metabolites were missing, diazepam and ketoprofen were chosen
as internal standards for the method validation (correlation coef-
Gibitz Eisath N et al. Supercritical Fluid Chromatography… Planta Med 2018; 84: 361–371



ficients > 0.992, LLOQ between 0.2 and 1.0 μg/mL, recoveries of
80.0–116.3% with RSD less than 10.1%).
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Future Perspectives and
Concluding Remarks

Whereas in the early days SFC has mainly been restricted to a
small group of nonpolar compounds, over the years it has largely
expanded its suitability and developed to a versatile technique
with great potential for natural product analysis. As shown in the
summarized approaches, ranging from nonpolar carotenoids to
highly polar glycosides, SFC has finally emerged from the shadow
of HPLC and GC, combining some of their best features. Conse-
quently, remarkable short methods are providing high efficient
separations at low costs and without the need of toxic solvents.
Moreover, the use of supercritical CO2 offers finally an adequate
solution for thermolabile and water-unstable plant ingredients in-
accessible with HPLC and GC. Often criticized limitations, like poor
quantitative performance and limited reliability, could clearly be
tackled according to recent publications presenting separations
with low LOQ values and excellent validation criteria. The upscale
from analytical to preparative SFC provides a cost-saving and rap-
id solution for the isolation of highly pure substances due to easy
solvent removal and the possibility of high sample loading. With
all these features and the continuously ongoing technical devel-
opment, SFC has become a promising analytical tool with a bright
future in the area of natural product analysis.
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