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Introduction

Microcephaly is the clinical sign of small cranium with a
significant reduction of the occipitofrontal head circumfer-
ence (OFC) of more than two (microcephaly) or three (severe
microcephaly) standard deviations (SDs) below themean for
age, sex, and ethnicity. According to the time of occurrence,
microcephaly can be classified as primary (congenital) or
secondary (postnatal). Primary microcephaly can be caused
by environmental factors such as alcohol, drugs, or infections
and/or by genetic defects.1–3 Primarymicrocephaly has been
in the focus of neuroscience for years and even more so in
the past months due to the Zika virus epidemic.4 Autosomal
recessive primary microcephaly (MCPH; MicroCephaly
Primary Hereditary) is a rare disorder characterized by
severe microcephaly at birth and intellectual disability.
The prevalence of MCPH ranges from 1:30,000 to
1:250,000 live births.5 Following the discovery of the first
gene linked to MCPH in 1998,6 16 genes have been reported
worldwide to date and referred to as MCPH1 to MCPH17. In
this review, we briefly discuss the current knowledge of this
disorder relevant for clinicians.

Phenotype Features

IndividualswithMCPHdisplay nonprogressivemicrocephaly
at birth that can already be diagnosed in utero by the 24th
week of gestation using ultrasound or magnetic resonance
imaging (MRI).7 MCPH has been reported in more than 300
families and individual patients worldwide; however, often
with only sparse phenotype descriptions. Apart from intel-
lectual disability (IQ between 30 and 70–80), hyperactivity
and attention deficit, speech delay, and a narrow sloping
forehead, MCPH patients usually do not have any further
neurological signs (►Fig. 1).1,8–10 Follow-up of MCPH5 pa-
tients revealed that the OFC can diverge further from the
mean following birth, to reach progressively � 4 to � 6 SD at
the age of 6 months.9 Intellectual ability is acknowledged to
be stable in patients with MCPH; however, no study
highlighting the results of repetitive intelligence tests paral-
lel to OFC measurements in patients with MCPH exists.
Although short stature is a classic feature of Seckel’s syn-
drome, it has been also reported in some individuals with
MCPH1, MCPH5, MCPH6, MCPH9, and MCPH11 gene muta-
tions.9,11–15 Low set and prominent ears, high-arched palate,
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unusual dermatoglyphic pattern, short stubby fingers, and
inverted nipples can be also noticed in individuals with
MCPH2.10 Only few patients with MCPH have been reported
with seizures that are usually tonic/clonic and well treatable
with antiepileptic medication.9,10 Additional behavioral
problems described in patients with MCPH2 include impul-
sivity, severe tantrums, head banging, and self-biting.10

Sensorineural hearing loss is an inconsistent finding in
patients with MCPH3.16,17

Neuroimaging Findings

Radiological studies on individuals with MCPH reveal typi-
cally a reduction in brain volume (microencephaly) and

simplified neocortical gyration of an otherwise architectur-
ally normal brain (►Figs. 2 and 3).3 While the classic defini-
tion of MCPH entails a lack of further severe brain
malformations, it is now acknowledged that these do occur
in patients with MCPH, particularly in patients with MCPH2.
Such brain malformations include further abnormalities of
neocortical gyration (perisylvian polymicrogyria, focal mi-
cropolygyria, and/or dysplasia), corpus callosum agenesis or
hypoplasia, periventricular neuronal heterotopias, and en-
larged lateral ventricles.9,12,16,18,19 Additional abnormalities
in MCPH2 include pachygyria with cortical thickening, lis-
sencephaly, and schizencephaly.10,20 Infratentorial anoma-
lies such as cerebellar or brain stem hypoplasia with or
without an increased space of the posterior fossa have

Fig. 1 Phenotype features of patients with MCPH. Sample pictures of four affected consanguineous Pakistani family members. (A) Individual 1
at the age of 21 years and (B) his brother at the age of 28 years. (C) Individual 2 at the age of 15 years and (D) his brother at the age of 20 years.
(E) Individual 3 at the age of 4 years and (F) his brother at the age of 8 years. (G) Individual 4 at the age of 6 years and (H) his relative at the age of
16 years. Adapted with permission from Kraemer et al.8 MCPH, microcephaly primary hereditary.

Fig. 2 (A, axial T1 image) Brain MRIs of a healthy individual and (B–D) a patient who is homozygous for a frameshift variant in the ASPM gene.
(B, axial T1 image, white arrow) Variable degrees of simplified gyral pattern and small frontal lobe, (C, sagittal T1 image, black arrow) hypoplasia
of corpus callosum, (D, sagittal T2 image, black arrow) mild cerebellar vermis hypoplasia, and (D, white arrow) a relatively small pons have all
been described in patients. MRI, magnetic resonance imaging.
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been highlighted in individual cases.9,16,20 A recent quanti-
fication studyof cortical regions inMCPH5 patients showed a
reduction of 50% ormore in the volume and surface area of all
cortical regions but not of the hippocampus.21

Genetic Causes and Findings

Seventeen MCPH loci have been identified in patients with
MCPH worldwide (►Table 1). Biallelic mutations in ASPM
are the most common cause of MCPH (68.6%), followed by
those in the WDR62 gene (14.1%) and MCPH1 gene (8%).
More genetic loci are still expected to exist given the lack of
mutations in known loci in approximately 50 to 75% of
western Europeans or North Americans with MCPH and
approximately 20 to 30% of Indians or Pakistanis with
MCPH.1,11,22 Most reported MCPH gene mutations produce
truncated nonfunctional proteins.23 A premature chromo-
some condensation and high frequency of prophase-like
cells (detected through karyotyping) can be present in
lymphocytes, fibroblasts, and lymphoblast cell lines of
patients with MCPH1.12,24

Pathomechanisms

MCPH genes are highly conserved among species and
expected to play a role during brain evolution.3,25 The
discovery of MCPH animal models opened the door for
understanding the possible roles of MCPH proteins during
brain development. MCPH proteins are ubiquitously
expressed and many of them are associated with the
centrosome or the mitotic spindles.23,26 The microcephaly
phenotype has been linked to a periventricular neural stem
cell defect in the area with a premature shift from symmet-
ric, “self-renewing” to asymmetric progenitor cell divisions

leading to premature neurogenesis, a depletion of the
progenitor pool, and thus a reduction of the final number
of cells in the brain.1,27–29 This stem cell proliferation and
differentiation defect have been associated with a shift of
the cleavage plane in several MCPH models.27,30,31 How-
ever, the latter is not the only underlying mechanism since
some MCPH mouse models—where the cleavage plane is
unaffected—still display microcephaly.30,31 Additional stud-
ies in MCPH models have also identified defects in chromo-
some condensation, microtubule dynamics, cell cycle
checkpoint control, and/or DNA damage-response signaling
during embryonic neurogenesis32,33 (►Fig. 3). Recently, it
has been shown that mitotic delay in the neuronal progeny
that leads to increased apoptosis is the major cause of
microcephaly phenotype in Magohþ/� mutant mouse
model.34 This could also play a role in MCPH. Intriguingly,
infection of human neural progenitor cells with Zika virus
dysregulates cell cycle progression in these cells and
increases apoptosis.35

Diagnosis

Detailed clinical history should be obtained from the family
about the pregnancy timeline and possible environmental
causes of microcephaly such as infections or drug abuse
during pregnancy. Family history about parental consan-
guinity and other affected siblings is also a key element for
patients with putative MCPH. Except for prominent micro-
cephaly, results of physical examination are usually normal
in MCPH patients. Height, weight, and OFC have to be
measured and plotted into developmental charts. Postna-
tally, TORCH [(T)oxoplasmosis, (O)ther Agents, (R)ubella,
(C)ytomegalovirus, and (H)erpes Simple] (especially cyto-
megalovirus; CMV) and metabolic causes of primary

Fig. 3 Illustration of the brain phenotype in MCPH patients and the main roles of MCPH proteins. Note the typical reduction in the brain volume
and the simplification in cortical gyration of an otherwise architecturally normal brain. MCPH proteins are involved in cell cycle dynamics,
ciliogenesis, the centrosome, neurogenesis, and neuronal migration. MCPH, microcephaly primary hereditary.
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Table 1 List of MCPH genes

Locus Protein Gene Location OMIM Putative clinical/neuroimaging
features

Ref.

MCPH1 Microcephalin 1 MCPH1 8p23.1 607117 Short stature, premature chromosome
condensation, increased frequency of
prophase-like cells.

6,12,24,47

MCPH2 WD-repeat-containing
protein 62

WDR62 19q13.12 613583 Low set and prominent ears,
high-arched palate, unusual
dermatoglyphic pattern, short stubby
fingers, inverted nipples, seizures,
impulsivity, severe tantrums, head
banging, self-biting.
Perisylvian polymicrogyria, focal
micropolygyria, periventricular
neuronal heterotopias, pachygyria
with cortical thickening, lissencephaly,
schizencephaly, cerebellar hypoplasia.

10,18,20,48,49

MCPH3 Cyclin-dependent
kinase 5 regulatory
subunit-associated
protein 2

CDK5RAP2 9q33.2 608201 Sensorineural hearing loss
Cerebellar hypoplasia.

16,17,27,50,51

MCPH4 Kinetochore scaffold 1 KNL1 15q15.1 609173 Enlarged ventricles. 52,53

MCPH5 Abnormal spindle-like,
microcephaly-
associated protein

ASPM 1q31.3 605481 Short stature, seizures, hyperactivity
and attention deficit, speech delay
Cerebellar hypoplasia, perisylvian
polymicrogyria.

9,19,30,54–56

MCPH6 Centromeric protein J CENPJ 13q12.2 609279 Short stature, joint stiffness, small
ears, notched nasal tip, hypertelorism,
strabismus, seizures.

50,57,58

MCPH7 SCL/TAL1-interrupting
locus protein

STIL 1p33 181590 Short stature, strabismus,
ataxia, seizures.
Lobar holoprosencephaly.

59–61

MCPH8 Centrosomal protein
135 kD

CEP135 4q12 611423 62

MCPH9 Centrosomal protein
152 kD

CEP152 15q21.1 613529 Short stature, impulsivity, aggression,
tantrums.

63

MCPH10 Zinc finger protein 335 ZNF335 20q13.12 610827 Cataracts, arthrogryposis, death in
infancy.

64

MCPH11 Polyhomeotic-like 1
protein

PHC1 12p13.31 602978 Short stature. 65

MCPH12 Cyclin-dependent
kinase 6

CDK6 7q21.2 603368 26

MCPH13 Centromeric protein E CENPE 4q24 117143 Small hands and feet, mild spasticity,
absent speech, poor gross, and
fine motor skills.
Cerebellar hypoplasia.

15

MCPH14 SAS-6 centriolar
assembly protein

SASS6 1p21.2 609321 Behavioral, psychiatric manifestations.
Cerebellar hypoplasia.

66

MCPH15 Major facilitator
superfamily
domain-containing
protein 2A

MFSD2A 1p34.2 614397 Spastic gait, progressive disease
course, increased plasma
lysophosphatidylcholines containing
mono- and polyunsaturated fatty
acyl chains.
Paucity of cerebral white matter
volume, cerebellar hypoplasia,
brain stem hypoplasia.

67,68
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microcephaly should be ruled out. Metabolic disorders
often cause secondary rather than primary microcephaly
and are often associated with additional symptoms and
clinical signs.36 Metabolic screening investigations, if nec-
essary, should mainly focus on maternal phenylketonuria,
phosphoglycerate dehydrogenase deficiency, and Amish
lethal microcephaly (2-ketoglutaric aciduria) as secondary
causes of microcephaly.37,38 Rare metabolic causes of
primary microcephaly include serine biosynthesis defects,
sterol biosynthesis disorders, mitochondriopathies, and
congenital disorders of glycosylation.36

Neuroimaging of the brain with ultrasound and/or MRI are
useful for the differential diagnosis in patients with primary
microcephaly. Cognitive abilities can be later quantified using
standard, often nonverbal cognitive tests. Cytogenetic analysis
ofperipheral blood isuseful to detect an increased frequencyof
prophase-like cells characteristic for MCPH1. In patients with
MCPH1, a premature chromosome condensation and high
frequency of prophase-like cells in lymphocytes, fibroblasts,
and lymphoblast cell lines can bediagnosed through karyotyp-
ing.12,24 The clinical diagnosis of MCPH can be confirmed
throughSanger sequencingof the twomost frequentlyaffected
genes ASPM and WDR62 and/or through next-generation se-
quencing technologies includingMCPH gene panel sequencing
or whole exome sequencing. Molecular genetic tests for some
MCPH genes are currently available for research basis only.

Therapy

Symptomatic treatment is available forMCPHpatients. Hyper-
activity can be treated with, for example, methylphenidate,
and epilepsies are usually controlled with single antiepileptic
drug regimens. Speech therapy, if appropriatewith supporting
sign language, and behavioral therapy are further therapeutic
approaches that should be considered. Promotion and support
of the patient and his family as well as (genetic) counseling of
family members are highly important.

Differential Diagnosis

All diseases associated with primary (congenital) micro-
cephaly without further extracranial malformations and
without facial dysmorphism are included in the differential
diagnosis of MCPH. Phenotyping and genotyping of patients
with overlapping but seemingly distinct phenotypes has
revealed a phenotype and genotype overlap with isolated
agenesis of the corpus callosum (ACC),39 Seckel’s syndrome
(microcephalic dwarfism type I),13,14,40 and microcephalic
osteoplastic dwarfism type II (MOPDII)41 (►Fig. 4). No
specific causative gene has been linked to isolated ACC;
however, it has been reported in individuals with hetero-
zygous mutation in MCPH3 gene (CDK5RAP2).39 Seckel’s
syndrome can be caused by mutations in ataxia-telangiec-
tasia and RAD3-related gene (ATR),42 retinoblastoma-bind-
ing protein-8 gene (CtIP/RBBP8),43 as well as MCPH genes:
CENPJ,13 CDK5RAP2,40 and CEP152.14 Characteristic findings
in Seckel’s syndrome include microcephaly, mental retar-
dation, severe short stature, facial dysmorphism, and bone
and teeth abnormalities.11,44 MOPDII can be caused by
mutations in the pericentrin gene (PCNT)41 which encodes
a protein interacting with MCPH proteins: MCPH145 and
CDK5RAP2.28 MOPDII patients have been reported to have
microcephaly, mental and motor retardation, short stature
with disproportionately short limbs, clinodactyly and/or
brachydactyly, epiphyseolysis, dental anomalies, and insu-
lin resistance.41,46

Conclusion

The ongoing discovery and research onMCPHgenes and their
animal models will increase our knowledge in this rare
nonprogressive neuropediatric disorder. Moreover, MCPH
genes might play a role during evolution, and therefore,
they are suitable candidates for studying normal brain
development.

Table 1 (Continued)

Locus Protein Gene Location OMIM Putative clinical/neuroimaging
features

Ref.

MCPH16 Ankyrin repeat- and
LEM domain-containing
protein 2

ANKLE2 12q24.33 616062 Short stature, ptosis, glaucoma, knee
contractures, adducted thumbs,
abnormally pigmented macules,
spastic quadriplegia.
Enlarged posterior horns of the
lateral ventricles.

69

MCPH17 Citron rho-interacting
serine/threonine kinase

CIT 12q24.23 605629 Short stature, bulbous nose, renal
aplasia, spasticity.
Microlissencephaly, brain stem
hypoplasia, cerebellar hypoplasia,
abnormal lamination.

70–73
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