J Pediatr Genet 2017; 06(03): 169-173
DOI: 10.1055/s-0037-1602387
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Role of the LF-SINE–Derived Distal ISL1 Enhancer in Patients with Classic Bladder Exstrophy

Rong Zhang
1   Institute of Human Genetics, University of Bonn, Bonn, Germany
,
Michael Knapp
2   Institute of Medical Biometry, Informatics, and Epidemiology, University of Bonn, Bonn, Germany
,
Franziska Kause
1   Institute of Human Genetics, University of Bonn, Bonn, Germany
,
Heiko Reutter
1   Institute of Human Genetics, University of Bonn, Bonn, Germany
3   Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
,
Michael Ludwig
4   Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
› Author Affiliations
Further Information

Publication History

14 February 2017

20 March 2017

Publication Date:
21 April 2017 (online)

Abstract

A genome-wide association study and meta-analysis identified ISL1 as the first genome-wide significant susceptibility gene for classic bladder exstrophy (CBE). A short interspersed repetitive element (SINE), first detected in lobe-finned fishes (LF-SINE), was shown to drive Isl1 expression in embryonic mouse genital eminence. Hence, we assumed this enhancer a conclusive target for mutations associated with CBE formation and analyzed a cohort of 200 CBE patients. Although we identified two enhancer variants in five CBE patients, their clinical significance seems unlikely, implying that sequence variants in the ISL1 LF-SINE enhancer are not frequently associated with CBE.

 
  • References

  • 1 Husman DA, Vandersteen DR. Anatomy of the cloacal exstrophy. In: Gearheart JP, Mathews R. , eds. The Exstrophy-Epispadias Complex. New York, NY: Kluwer Academic/Plenum Publishers; 1999: 199-206
  • 2 Hurst JA. Anterior abdominal wall defects. In: Firth HV, Hall JG. , eds. Oxford Desk Reference: Clinical Genetics. New York, NY: Oxford University Press; 2012: 566
  • 3 Gearhart JP, Jeffs RD. Exstrophy-epispadias complex and bladder anomalies. In: Walsh PC, Retik AB, Vaughan ED, Wein AJ. , eds. Campbell's Urology. 7th ed. Philadelphia, PA: WB Saunders; 1998: 1939-1990
  • 4 Reutter H, Boyadjiev SA, Gambhir L. , et al. Phenotype severity in the bladder exstrophy-epispadias complex: analysis of genetic and nongenetic contributing factors in 441 families from North America and Europe. J Pediatr 2011; 159 (05) 825-831.e1
  • 5 Reutter H, Shapiro E, Gruen JR. Seven new cases of familial isolated bladder exstrophy and epispadias complex (BEEC) and review of the literature. Am J Med Genet A 2003; 120A (02) 215-221
  • 6 Ludwig M, Ching B, Reutter H, Boyadjiev SA. Bladder exstrophy-epispadias complex. Birth Defects Res A Clin Mol Teratol 2009; 85 (06) 509-522
  • 7 Reutter H, Qi L, Gearhart JP. , et al. Concordance analyses of twins with bladder exstrophy-epispadias complex suggest genetic etiology. Am J Med Genet A 2007; 143A (22) 2751-2756
  • 8 von Lowtzow C, Hofmann A, Zhang R. , et al. CNV analysis in 169 patients with bladder exstrophy-epispadias complex. BMC Med Genet 2016; 17 (01) 35 . Doi: 10.1186/s12881-016-0299-x
  • 9 Draaken M, Reutter H, Schramm C. , et al. Microduplications at 22q11.21 are associated with non-syndromic classic bladder exstrophy. Eur J Med Genet 2010; 53 (02) 55-60
  • 10 Lundin J, Söderhäll C, Lundén L. , et al. 22q11.2 microduplication in two patients with bladder exstrophy and hearing impairment. Eur J Med Genet 2010; 53 (02) 61-65
  • 11 Draaken M, Baudisch F, Timmermann B. , et al. Classic bladder exstrophy: Frequent 22q11.21 duplications and definition of a 414 kb phenocritical region. Birth Defects Res A Clin Mol Teratol 2014; 100 (06) 512-517
  • 12 Wilkins S, Zhang KW, Mahfuz I. , et al. Insertion/deletion polymorphisms in the ΔNp63 promoter are a risk factor for bladder exstrophy epispadias complex. PLoS Genet 2012; 8 (12) e1003070 . Doi: 10.1371/journal.pgen.1003070
  • 13 Qi L, Wang M, Yagnik G. , et al. Candidate gene association study implicates p63 in the etiology of nonsyndromic bladder-exstrophy-epispadias complex. Birth Defects Res A Clin Mol Teratol 2013; 97 (12) 759-763
  • 14 Draaken M, Knapp M, Pennimpede T. , et al. Genome-wide association study and meta-analysis identify ISL1 as genome-wide significant susceptibility gene for bladder exstrophy. PLoS Genet 2015; 11 (03) e1005024 Doi: 10.1371/journal.pgen.1005024
  • 15 Karlsson O, Thor S, Norberg T, Ohlsson H, Edlund T. Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a homeo- and a Cys-His domain. Nature 1990; 344 (6269): 879-882
  • 16 Zhuang S, Zhang Q, Zhuang T, Evans SM, Liang X, Sun Y. Expression of Isl1 during mouse development. Gene Expr Patterns 2013; 13 (08) 407-412
  • 17 Bejerano G, Lowe CB, Ahituv N. , et al. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 2006; 441 (7089): 87-90
  • 18 Tsuchida T, Ensini M, Morton SB. , et al. Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 1994; 79 (06) 957-970
  • 19 Uemura O, Okada Y, Ando H. , et al. Comparative functional genomics revealed conservation and diversification of three enhancers of the isl1 gene for motor and sensory neuron-specific expression. Dev Biol 2005; 278 (02) 587-606
  • 20 Kim N, Park C, Jeong Y, Song MR. Functional diversification of motor neuron-specific Isl1 enhancers during evolution. PLoS Genet 2015; 11 (10) e1005560 . Doi: 10.1371/journal.pgen.1005560
  • 21 Hubbard T, Andrews D, Caccamo M. , et al. Ensembl 2005. Nucleic Acids Res 2005; 33 (Database issue): D447-D453
  • 22 ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489 (7414): 57-74
  • 23 Dyson HJ, Wright PE. Role of intrinsic protein disorder in the function and interactions of the transcriptional coactivators CREB-binding protein (CBP) and p300. J Biol Chem 2016; 291 (13) 6714-6722
  • 24 Reutter H, Draaken M, Pennimpede T. , et al. Genome-wide association study and mouse expression data identify a highly conserved 32 kb intergenic region between WNT3 and WNT9b as possible susceptibility locus for isolated classic exstrophy of the bladder. Hum Mol Genet 2014; 23 (20) 5536-5544
  • 25 Siepel A, Bejerano G, Pedersen JS. , et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 2005; 15 (08) 1034-1050
  • 26 Blanchette M, Kent WJ, Riemer C. , et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res 2004; 14 (04) 708-715
  • 27 Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science 2008; 322 (5903): 881-888
  • 28 Mathelier A, Shi W, Wasserman WW. Identification of altered cis-regulatory elements in human disease. Trends Genet 2015; 31 (02) 67-76
  • 29 Slepak TI, Webster KA, Zang J. , et al. Control of cardiac-specific transcription by p300 through myocyte enhancer factor-2D. J Biol Chem 2001; 276 (10) 7575-7585
  • 30 Schmidt D, Wilson MD, Ballester B. , et al. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 2010; 328 (5981): 1036-1040
  • 31 Nakaoka H, Gurumurthy A, Hayano T. , et al. Allelic imbalance in regulation of ANRIL through chromatin interaction at 9p21 endometriosis risk locus. PLoS Genet 2016; 12 (04) e1005893 . Doi: 10.1371/journal.pgen.1005893
  • 32 Jurata LW, Pfaff SL, Gill GN. The nuclear LIM domain interactor NLI mediates homo- and heterodimerization of LIM domain transcription factors. J Biol Chem 1998; 273 (06) 3152-3157
  • 33 McEwen GK, Woolfe A, Goode D, Vavouri T, Callaway H, Elgar G. Ancient duplicated conserved noncoding elements in vertebrates: a genomic and functional analysis. Genome Res 2006; 16 (04) 451-465
  • 34 Dermitzakis ET, Clark AG. Evolution of transcription factor binding sites in Mammalian gene regulatory regions: conservation and turnover. Mol Biol Evol 2002; 19 (07) 1114-1121
  • 35 Ludwig M, Reutter H. Genome-wide array data and next generation sequencing unravel the etiology of urogenital malformations. J Pediatr Genet 2012; 1 (04) 209-216