Semin Respir Crit Care Med 2017; 38(03): 271-286
DOI: 10.1055/s-0037-1602716
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Pharmacokinetic/Pharmacodynamics-Optimized Antimicrobial Therapy in Patients with Hospital-Acquired Pneumonia/Ventilator-Associated Pneumonia

Helmi Sulaiman
1   Burns, Trauma and Critical Care Research Centre, UQ Centre for Clinical Research, Brisbane, Australia
2   Infectious Diseases Unit, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
,
Mohd H. Abdul-Aziz
1   Burns, Trauma and Critical Care Research Centre, UQ Centre for Clinical Research, Brisbane, Australia
3   School of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
,
Jason A. Roberts
1   Burns, Trauma and Critical Care Research Centre, UQ Centre for Clinical Research, Brisbane, Australia
4   Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia
5   Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Australia
6   Centre of Translational Pharmacodynamics, The University of Queensland, Brisbane, Australia
› Author Affiliations
Further Information

Publication History

Publication Date:
04 June 2017 (online)

Abstract

Hospital-acquired pneumonia and ventilator-associated pneumonia continue to cause significant morbidity and mortality. With increasing rates of antimicrobial resistance, the importance of optimizing antibiotic treatment is key to maximize treatment outcomes. This is especially important in critically ill patients in intensive care units, in whom the infection is usually caused by less susceptible organisms. In addition, the marked physiological changes that can occur in these patients can cause serious changes in antibiotic pharmacokinetics which in turn alter the attainment of therapeutic drug exposures. This article reviews the various aspects of the pharmacokinetic changes that can occur in the critically ill patients, the barriers to achieving therapeutic drug exposures in pneumonia for systemically delivered antibiotics, the optimization for commonly used antibiotics in hospital- and ventilator-associated pneumonia, the agents that should be avoided in the treatment regimen, as well as the use of adjunctive therapy in the form of nebulized antibiotics.

 
  • References

  • 1 Chawla R. Epidemiology, etiology, and diagnosis of hospital-acquired pneumonia and ventilator-associated pneumonia in Asian countries. Am J Infect Control 2008; 36 (4, Suppl): S93-S100
  • 2 Rello J, Sa-Borges M, Correa H, Leal S-R, Baraibar J. Variations in etiology of ventilator-associated pneumonia across four treatment sites: implications for antimicrobial prescribing practices. Am J Respir Crit Care Med 1999; 160 (02) 608-613
  • 3 Rello J, Díaz E, Rodríguez A. Etiology of ventilator-associated pneumonia. Clin Chest Med 2005; 26 (01) 87-95
  • 4 Park DR. The microbiology of ventilator-associated pneumonia. Respir Care 2005; 50 (06) 742-763 , discussion 763–765
  • 5 Meyer E, Schwab F, Gastmeier P. Nosocomial methicillin resistant Staphylococcus aureus pneumonia - epidemiology and trends based on data of a network of 586 German ICUs (2005-2009). Eur J Med Res 2010; 15 (12) 514-524
  • 6 Kallen AJ, Mu Y, Bulens S. , et al; Active Bacterial Core surveillance (ABCs) MRSA Investigators of the Emerging Infections Program. Health care-associated invasive MRSA infections, 2005-2008. JAMA 2010; 304 (06) 641-648
  • 7 Moalla M, Baratin D, Giard M, Vanhems P. Incidence of methicillin-resistant Staphylococcus aureus nosocomial infections in intensive care units in Lyon University hospitals, France, 2003-2006. Infect Control Hosp Epidemiol 2008; 29 (05) 454-456
  • 8 Udy AA, Varghese JM, Altukroni M. , et al. Subtherapeutic initial β-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest 2012; 142 (01) 30-39
  • 9 Udy AA, Roberts JA, De Waele JJ, Paterson DL, Lipman J. What's behind the failure of emerging antibiotics in the critically ill? Understanding the impact of altered pharmacokinetics and augmented renal clearance. Int J Antimicrob Agents 2012; 39 (06) 455-457
  • 10 Udy AA, Roberts JA, Boots RJ, Paterson DL, Lipman J. Augmented renal clearance: implications for antibacterial dosing in the critically ill. Clin Pharmacokinet 2010; 49 (01) 1-16
  • 11 Roberts JA, Aziz MHA, Lipman J. , et al. Challenges and potential solutions – individualised antibiotic dosing at the bedside for critically ill patients: a structured review. Lancet Infect Dis 2014; 14 (06) 498-509
  • 12 Roberts JA, Abdul-Aziz MH, Lipman J. , et al; International Society of Anti-Infective Pharmacology and the Pharmacokinetics and Pharmacodynamics Study Group of the European Society of Clinical Microbiology and Infectious Diseases. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis 2014; 14 (06) 498-509
  • 13 Sinnollareddy MG, Roberts MS, Lipman J, Roberts JA. β-lactam pharmacokinetics and pharmacodynamics in critically ill patients and strategies for dose optimization: a structured review. Clin Exp Pharmacol Physiol 2012; 39 (06) 489-496
  • 14 Ulldemolins M, Roberts JA, Rello J, Paterson DL, Lipman J. The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet 2011; 50 (02) 99-110
  • 15 Udy AA, Roberts JA, Lipman J. Implications of augmented renal clearance in critically ill patients. Nat Rev Nephrol 2011; 7 (09) 539-543
  • 16 Jamal JA, Abdul-Aziz MH, Lipman J, Roberts JA. Defining antibiotic dosing in lung infections. Clin Pulm Med 2013; 20 (03) 121-128
  • 17 Vincent JL, Bassetti M, François B. , et al. Advances in antibiotic therapy in the critically ill. Crit Care 2016; 20 (01) 133
  • 18 Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med 37.3 2009; 840-851
  • 19 Theuretzbacher U. Tissue penetration of antibacterial agents: how should this be incorporated into pharmacodynamic analyses?. Curr Opin Pharmacol 2007; 7 (05) 498-504
  • 20 Zinserling AV. The pathologic anatomy of important forms of bacterial pneumonia [in German]. Zentralbl Allg Pathol 1990; 136 (1-2): 3-13
  • 21 Nix DE. Intrapulmonary concentrations of antimicrobial agents. Infect Dis Clin North Am 1998; 12 (03) 631-646 , viii
  • 22 Rodvold KA, George JM, Yoo L. Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antibacterial agents. Clin Pharmacokinet 2011; 50 (10) 637-664
  • 23 Wenzler E, Fraidenburg DR, Scardina T, Danziger LH. Inhaled antibiotics for gram-negative respiratory infections. Clin Microbiol Rev 2016; 29 (03) 581-632
  • 24 Baldwin DR, Honeybourne D, Wise R. Pulmonary disposition of antimicrobial agents: methodological considerations. Antimicrob Agents Chemother 1992; 36 (06) 1171-1175
  • 25 Scheetz MH, Wunderink RG, Postelnick MJ, Noskin GA. Potential impact of vancomycin pulmonary distribution on treatment outcomes in patients with methicillin-resistant Staphylococcus aureus pneumonia. Pharmacotherapy 2006; 26 (04) 539-550
  • 26 Rodvold KA, Yoo L, George JM. Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antifungal, antitubercular and miscellaneous anti-infective agents. Clin Pharmacokinet 2011; 50 (11) 689-704
  • 27 Honeybourne D. Antibiotic penetration in the respiratory tract and implications for the selection of antimicrobial therapy. Curr Opin Pulm Med 1997; 3 (02) 170-174
  • 28 Cousson J, Floch T, Guillard T. , et al. Lung concentrations of ceftazidime administered by continuous versus intermittent infusion in patients with ventilator-associated pneumonia. Antimicrob Agents Chemother 2015; 59 (04) 1905-1909
  • 29 Boselli E, Breilh D, Rimmelé T. , et al. Plasma and lung concentrations of ceftazidime administered in continuous infusion to critically ill patients with severe nosocomial pneumonia. Intensive Care Med 2004; 30 (05) 989-991
  • 30 Cazzola M, Gabriella Matera M, Polverino M, Santangelo G, De Franchis I, Rossi F. Pulmonary penetration of ceftazidime. J Chemother 1995; 7 (01) 50-54
  • 31 Conte Jr JE, Golden JA, Kelley MG, Zurlinden E. Intrapulmonary pharmacokinetics and pharmacodynamics of meropenem. Int J Antimicrob Agents 2005; 26 (06) 449-456
  • 32 Allegranzi B, Cazzadori A, Di Perri G. , et al. Concentrations of single-dose meropenem (1 g iv) in bronchoalveolar lavage and epithelial lining fluid. J Antimicrob Chemother 2000; 46 (02) 319-322
  • 33 Lodise TP, Drusano GL, Butterfield JM, Scoville J, Gotfried M, Rodvold KA. Penetration of vancomycin into epithelial lining fluid in healthy volunteers. Antimicrob Agents Chemother 2011; 55 (12) 5507-5511
  • 34 Georges H, Leroy O, Alfandari S. , et al. Pulmonary disposition of vancomycin in critically ill patients. Eur J Clin Microbiol Infect Dis 1997; 16 (05) 385-388
  • 35 Lamer C, de Beco V, Soler P. , et al. Analysis of vancomycin entry into pulmonary lining fluid by bronchoalveolar lavage in critically ill patients. Antimicrob Agents Chemother 1993; 37 (02) 281-286
  • 36 Kikuchi E, Kikuchi J, Nasuhara Y, Oizumi S, Ishizaka A, Nishimura M. Comparison of the pharmacodynamics of biapenem in bronchial epithelial lining fluid in healthy volunteers given half-hour and three-hour intravenous infusions. Antimicrob Agents Chemother 2009; 53 (07) 2799-2803
  • 37 Burkhardt O, Majcher-Peszynska J, Borner K. , et al. Penetration of ertapenem into different pulmonary compartments of patients undergoing lung surgery. J Clin Pharmacol 2005; 45 (06) 659-665
  • 38 Ewig S, Torres A, El-Ebiary M. , et al. Bacterial colonization patterns in mechanically ventilated patients with traumatic and medical head injury. Incidence, risk factors, and association with ventilator-associated pneumonia. Am J Respir Crit Care Med 1999; 159 (01) 188-198
  • 39 Trouillet JL, Chastre J, Vuagnat A. , et al. Ventilator-associated pneumonia caused by potentially drug-resistant bacteria. Am J Respir Crit Care Med 1998; 157 (02) 531-539
  • 40 Schaberg DR, Culver DH, Gaynes RP. Major trends in the microbial etiology of nosocomial infection. Am J Med 1991; 91 (3B): 72S-75S
  • 41 Brito V, Niederman MS. Healthcare-associated pneumonia is a heterogeneous disease, and all patients do not need the same broad-spectrum antibiotic therapy as complex nosocomial pneumonia. Curr Opin Infect Dis 2009; 22 (03) 316-325
  • 42 Valenza G, Seifert H, Decker-Burgard S, Laeuffer J, Morrissey I, Mutters R. ; COMPACT Germany Study Group. Comparative Activity of Carbapenem Testing (COMPACT) study in Germany. Int J Antimicrob Agents 2012; 39 (03) 255-258
  • 43 Jones RN. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis 2010; 51 (Suppl. 01) S81-S87
  • 44 Ambrose PG, Bhavnani SM, Ellis-Grosse EJ, Drusano GL. Pharmacokinetic-pharmacodynamic considerations in the design of hospital-acquired or ventilator-associated bacterial pneumonia studies: look before you leap!. Clin Infect Dis 2010; 51 (Suppl. 01) S103-S110
  • 45 Roberts JA, Taccone FS, Lipman J. Understanding PK/PD. Intensive Care Med 2016; 42 (11) 1797-1800
  • 46 Gonçalves-Pereira J, Póvoa P. Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of β-lactams. Crit Care 2011; 15 (05) R206
  • 47 Wenzler E, Gotfried MH, Loutit JS. , et al. Meropenem-RPX7009 Concentrations in Plasma, Epithelial Lining Fluid, and Alveolar Macrophages of Healthy Adult Subjects. Antimicrob Agents Chemother 2015; 59 (12) 7232-7239
  • 48 Boselli E, Breilh D, Duflo F. , et al. Steady-state plasma and intrapulmonary concentrations of cefepime administered in continuous infusion in critically ill patients with severe nosocomial pneumonia. Crit Care Med 2003; 31 (08) 2102-2106
  • 49 Rodvold KA, Nicolau DP, Lodise TP. , et al. Identifying exposure targets for treatment of staphylococcal pneumonia with ceftobiprole. Antimicrob Agents Chemother 2009; 53 (08) 3294-3301
  • 50 Boselli E, Breilh D, Cannesson M. , et al. Steady-state plasma and intrapulmonary concentrations of piperacillin/tazobactam 4 g/0.5 g administered to critically ill patients with severe nosocomial pneumonia. Intensive Care Med 2004; 30 (05) 976-979
  • 51 MacGowan A. Revisiting Beta-lactams - PK/PD improves dosing of old antibiotics. Curr Opin Pharmacol 2011; 11 (05) 470-476
  • 52 McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents 2008; 31 (04) 345-351
  • 53 Roberts JA, Paul SK, Akova M. , et al; DALI Study. DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients?. Clin Infect Dis 2014; 58 (08) 1072-1083
  • 54 Abdul-Aziz MH, Dulhunty JM, Bellomo R, Lipman J, Roberts JA. Continuous beta-lactam infusion in critically ill patients: the clinical evidence. Ann Intensive Care 2012; 2 (01) 37
  • 55 Abdul-Aziz MH, Sulaiman H, Mat-Nor M-B. , et al. Beta-Lactam Infusion in Severe Sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med 2016; 42 (10) 1535-1545
  • 56 Buck C, Bertram N, Ackermann T, Sauerbruch T, Derendorf H, Paar WD. Pharmacokinetics of piperacillin-tazobactam: intermittent dosing versus continuous infusion. Int J Antimicrob Agents 2005; 25 (01) 62-67
  • 57 Roberts JA, Kirkpatrick CM, Roberts MS, Robertson TA, Dalley AJ, Lipman J. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother 2009; 64 (01) 142-150
  • 58 Roberts JA, Roberts MS, Robertson TA, Dalley AJ, Lipman J. Piperacillin penetration into tissue of critically ill patients with sepsis--bolus versus continuous administration?. Crit Care Med 2009; 37 (03) 926-933
  • 59 Shea KM, Cheatham SC, Smith DW, Wack MF, Sowinski KM, Kays MB. Comparative pharmacodynamics of intermittent and prolonged infusions of piperacillin/tazobactam using Monte Carlo simulations and steady-state pharmacokinetic data from hospitalized patients. Ann Pharmacother 2009; 43 (11) 1747-1754
  • 60 Lodise Jr TP, Lomaestro B, Rodvold KA, Danziger LH, Drusano GL. Pharmacodynamic profiling of piperacillin in the presence of tazobactam in patients through the use of population pharmacokinetic models and Monte Carlo simulation. Antimicrob Agents Chemother 2004; 48 (12) 4718-4724
  • 61 George JM, Towne TG, Rodvold KA. Prolonged infusions of β-lactam antibiotics: implication for antimicrobial stewardship. Pharmacotherapy 2012; 32 (08) 707-721
  • 62 Nicasio AM, Ariano RE, Zelenitsky SA. , et al. Population pharmacokinetics of high-dose, prolonged-infusion cefepime in adult critically ill patients with ventilator-associated pneumonia. Antimicrob Agents Chemother 2009; 53 (04) 1476-1481
  • 63 Dulhunty JM, Roberts JA, Davis JS. , et al; BLING II Investigators for the ANZICS Clinical Trials Group. A multicenter randomized trial of continuous versus intermittent β-lactam infusion in severe sepsis. Am J Respir Crit Care Med 2015; 192 (11) 1298-1305
  • 64 Tamma PD, Putcha N, Suh YD, Van Arendonk KJ, Rinke ML. Does prolonged β-lactam infusions improve clinical outcomes compared to intermittent infusions? A meta-analysis and systematic review of randomized, controlled trials. BMC Infect Dis 2011; 11 (01) 181
  • 65 Korbila IP, Tansarli GS, Karageorgopoulos DE, Vardakas KZ, Falagas ME. Extended or continuous versus short-term intravenous infusion of cephalosporins: a meta-analysis. Expert Rev Anti Infect Ther 2013; 11 (06) 585-595
  • 66 Chant C, Leung A, Friedrich JO. Optimal dosing of antibiotics in critically ill patients by using continuous/extended infusions: a systematic review and meta-analysis. Crit Care 2013; 17 (06) R279
  • 67 Lal A, Jaoude P, El-Solh AA. Prolonged versus intermittent infusion of β-lactams for the treatment of nosocomial pneumonia: a meta-analysis. Infect Chemother 2016; 48 (02) 81-90
  • 68 Roberts JA, Webb S, Paterson D, Ho KM, Lipman J. A systematic review on clinical benefits of continuous administration of β-lactam antibiotics. Crit Care Med 2009; 37 (06) 2071-2078
  • 69 Roberts JA, Abdul-Aziz MH, Davis JS. , et al. Continuous versus intermittent β-lactam infusion in severe sepsis. A meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med 2016; 194 (06) 681-691
  • 70 Nicasio AM, Eagye KJ, Nicolau DP. , et al. Pharmacodynamic-based clinical pathway for empiric antibiotic choice in patients with ventilator-associated pneumonia. J Crit Care 2010; 25 (01) 69-77
  • 71 Liu Y-Y, Wang Y, Walsh TR. , et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016; 16 (02) 161-168
  • 72 Velkov T, Thompson PE, Nation RL, Li J. Structure--activity relationships of polymyxin antibiotics. J Med Chem 2010; 53 (05) 1898-1916
  • 73 Barnett M, Bushby SR, Wilkinson S. Sodium sulphomethyl derivatives of polymyxins. Br Pharmacol Chemother 1964; 23 (03) 552-574
  • 74 Plachouras D, Karvanen M, Friberg LE. , et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria. Antimicrob Agents Chemother 2009; 53 (08) 3430-3436
  • 75 Zavascki AP, Goldani LZ, Cao G. , et al. Pharmacokinetics of intravenous polymyxin B in critically ill patients. Clin Infect Dis 2008; 47 (10) 1298-1304
  • 76 Sandri AM, Landersdorfer CB, Jacob J. , et al. Population pharmacokinetics of intravenous polymyxin B in critically ill patients: implications for selection of dosage regimens. Clin Infect Dis 2013; 57 (04) 524-531
  • 77 Garonzik SM, Li J, Thamlikitkul V. , et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother 2011; 55 (07) 3284-3294
  • 78 Imberti R, Cusato M, Villani P. , et al. Steady-state pharmacokinetics and BAL concentration of colistin in critically Ill patients after IV colistin methanesulfonate administration. Chest 2010; 138 (06) 1333-1339
  • 79 Markou N, Fousteri M, Markantonis SL, Boutzouka E, Tsigou E, Baltopoulo G. Colistin penetration in the alveolar lining fluid of critically ill patients treated with IV colistimethate sodium. Chest 2011; 139 (01) 232-233 , author reply 233–234
  • 80 Tam VH, Schilling AN, Vo G. , et al. Pharmacodynamics of polymyxin B against Pseudomonas aeruginosa . Antimicrob Agents Chemother 2005; 49 (09) 3624-3630
  • 81 Bergen PJ, Li J, Nation RL, Turnidge JD, Coulthard K, Milne RW. Comparison of once-, twice- and thrice-daily dosing of colistin on antibacterial effect and emergence of resistance: studies with Pseudomonas aeruginosa in an in vitro pharmacodynamic model. J Antimicrob Chemother 2008; 61 (03) 636-642
  • 82 Dudhani RV, Turnidge JD, Nation RL, Li J. fAUC/MIC is the most predictive pharmacokinetic/pharmacodynamic index of colistin against Acinetobacter baumannii in murine thigh and lung infection models. J Antimicrob Chemother 2010; 65 (09) 1984-1990
  • 83 Dudhani RV, Turnidge JD, Coulthard K. , et al. Elucidation of the pharmacokinetic/pharmacodynamic determinant of colistin activity against Pseudomonas aeruginosa in murine thigh and lung infection models. Antimicrob Agents Chemother 2010; 54 (03) 1117-1124
  • 84 Nation RL, Garonzik SM, Thamlikitkul V. , et al. Dosing guidance for intravenous colistin in critically-ill patients. Clin Infect Dis 2016; DOI: 10.1093/cid/ciw839.
  • 85 Biswas S, Brunel J-M, Dubus J-C, Reynaud-Gaubert M, Rolain J-M. Colistin: an update on the antibiotic of the 21st century. Expert Rev Anti Infect Ther 2012; 10 (08) 917-934
  • 86 Pogue JM, Ortwine JK, Kaye KS. Editorial commentary: optimal usage of colistin: are we any closer?. Clin Infect Dis 2016 . pii: 0885066616646551
  • 87 Benattar YD, Omar M, Zusman O. , et al. The effectiveness and safety of high-dose colistin: prospective cohort study. Clin Infect Dis 2016; 63 (12) 1605-1612
  • 88 Elefritz JL, Bauer KA, Jones C, Mangino JE, Porter K, Murphy CV. Efficacy and safety of a colistin loading dose, high-dose maintenance regimen in critically ill patients with multidrug-resistant gram-negative pneumonia. J Intensive Care Med 2016 pii:0885066616646551
  • 89 Bergen PJ, Bulman ZP, Landersdorfer CB. , et al. Optimizing polymyxin combinations against resistant gram-negative bacteria. Infect Dis Ther 2015; 4 (04) 391-415
  • 90 Bulitta JB, Yang JC, Yohonn L. , et al. Attenuation of colistin bactericidal activity by high inoculum of Pseudomonas aeruginosa characterized by a new mechanism-based population pharmacodynamic model. Antimicrob Agents Chemother 2010; 54 (05) 2051-2062
  • 91 Boisson M, Jacobs M, Grégoire N. , et al. Comparison of intrapulmonary and systemic pharmacokinetics of colistin methanesulfonate (CMS) and colistin after aerosol delivery and intravenous administration of CMS in critically ill patients. Antimicrob Agents Chemother 2014; 58 (12) 7331-7339
  • 92 European Medicines Agency completes review of polymyxin-based medicines Recommendations issued for safe use in patients with serious infections resistant to standard antibiotics 2014; Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Polymyxin_31/WC500176333.pdf . Accessed January 28, 2017
  • 93 FDA Approved Drug Products. Label and approval history for Coly-Mycin M, NDA 050108. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/050108s030lbl.pdf . Accessed January 28, 2017
  • 94 Nation RL, Garonzik SM, Li J. , et al. Updated US and European dose recommendations for intravenous colistin: how do they perform?. Clin Infect Dis 2016; 62 (05) 552-558
  • 95 Vinks A, Derendorf H, Mouton J. Fundamentals of Antimicrobial Pharmacokinetics and Pharmacodynamics. Springer; 2014
  • 96 Levine DP. Vancomycin: a history. Clin Infect Dis 2006; 42 (Suppl. 01) S5-S12
  • 97 Marsot A, Boulamery A, Bruguerolle B, Simon N. Vancomycin: a review of population pharmacokinetic analyses. Clin Pharmacokinet 2012; 51 (01) 1-13
  • 98 Kalil AC, Metersky ML, Klompas M. , et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2016; 63 (05) 61-111
  • 99 Rybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis 2006; 42 (Suppl. 01) S35-S39
  • 100 Matzke GR, McGory RW, Halstenson CE, Keane WF. Pharmacokinetics of vancomycin in patients with various degrees of renal function. Antimicrob Agents Chemother 1984; 25 (04) 433-437
  • 101 Rodvold K, Gotfried M, Loutit J, Porter S. Plasma and intrapulmonary concentrations of oritavancin and vancomycin in normal healthy adults. Clinical Microbiology & Infection Supplement 10 () 44 , JAN 2004
  • 102 Rybak M, Lomaestro B, Rotschafer JC. , et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 2009; 66 (01) 82-98
  • 103 Patel N, Pai MP, Rodvold KA, Lomaestro B, Drusano GL, Lodise TP. Vancomycin: we can't get there from here. Clin Infect Dis 2011; 52 (08) 969-974
  • 104 Cataldo MA, Tacconelli E, Grilli E, Pea F, Petrosillo N. Continuous versus intermittent infusion of vancomycin for the treatment of Gram-positive infections: systematic review and meta-analysis. J Antimicrob Chemother 2012; 67 (01) 17-24
  • 105 Rello J, Sole-Violan J, Sa-Borges M. , et al. Pneumonia caused by oxacillin-resistant Staphylococcus aureus treated with glycopeptides. Crit Care Med 2005; 33 (09) 1983-1987
  • 106 Kalil AC, Klompas M, Haynatzki G, Rupp ME. Treatment of hospital-acquired pneumonia with linezolid or vancomycin: a systematic review and meta-analysis. BMJ Open 2013; 3 (10) e003912
  • 107 Maclayton DO, Hall II RG. Pharmacologic treatment options for nosocomial pneumonia involving methicillin-resistant Staphylococcus aureus . Ann Pharmacother 2007; 41 (02) 235-244
  • 108 Oliphant CM, Green GM. Quinolones: a comprehensive review. Am Fam Physician 2002; 65 (03) 455-464
  • 109 Rotschafer JC, Andes DR, Rodvold K. Antibiotic Pharmacodynamics. Springer; 2016
  • 110 Vance-Bryan K, Guay DR, Rotschafer JC. Clinical pharmacokinetics of ciprofloxacin. Clin Pharmacokinet 1990; 19 (06) 434-461
  • 111 Aminimanizani A, Beringer P, Jelliffe R. Comparative pharmacokinetics and pharmacodynamics of the newer fluoroquinolone antibacterials. Clin Pharmacokinet 2001; 40 (03) 169-187
  • 112 Gotfried MH, Danziger LH, Rodvold KA. Steady-state plasma and intrapulmonary concentrations of levofloxacin and ciprofloxacin in healthy adult subjects. Chest 2001; 119 (04) 1114-1122
  • 113 Lubasch A, Keller I, Borner K, Koeppe P, Lode H. Comparative pharmacokinetics of ciprofloxacin, gatifloxacin, grepafloxacin, levofloxacin, trovafloxacin, and moxifloxacin after single oral administration in healthy volunteers. Antimicrob Agents Chemother 2000; 44 (10) 2600-2603
  • 114 Barth J, Jäger D, Mundkowski R, Drewelow B, Welte T, Burkhardt O. Single- and multiple-dose pharmacokinetics of intravenous moxifloxacin in patients with severe hepatic impairment. J Antimicrob Chemother 2008; 62 (03) 575-578
  • 115 Ambrose PG, Bhavnani SM, Owens Jr RC. Clinical pharmacodynamics of quinolones. Infect Dis Clin North Am 2003; 17 (03) 529-543
  • 116 Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 1993; 37 (05) 1073-1081
  • 117 Odenholt I, Cars O. Pharmacodynamics of moxifloxacin and levofloxacin against Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli: simulation of human plasma concentrations after intravenous dosage in an in vitro kinetic model. J Antimicrob Chemother 2006; 58 (05) 960-965
  • 118 Zelenitsky S, Ariano R, Harding G, Forrest A. Evaluating ciprofloxacin dosing for Pseudomonas aeruginosa infection by using clinical outcome-based Monte Carlo simulations. Antimicrob Agents Chemother 2005; 49 (10) 4009-4014
  • 119 Thomas JK, Forrest A, Bhavnani SM. , et al. Pharmacodynamic evaluation of factors associated with the development of bacterial resistance in acutely ill patients during therapy. Antimicrob Agents Chemother 1998; 42 (03) 521-527
  • 120 Rotschafer JC, Ullman MA, Sullivan CJ. Optimal use of fluoroquinolones in the intensive care unit setting. Crit Care Clin 2011; 27 (01) 95-106
  • 121 Epps LC, Walker PD. Fluoroquinolone consumption and emerging resistance. US Pharm 2006; 10: 47-54
  • 122 Kavanagh K, Pan J, Marwick C. , et al. Cumulative and temporal associations between antimicrobial prescribing and community-associated Clostridium difficile infection: population-based case-control study using administrative data. J Antimicrob Chemother 2016 ;dkw528
  • 123 Hernandez-Santiago V, Marwick CA, Patton A, Davey PG, Donnan PT, Guthrie B. Time series analysis of the impact of an intervention in Tayside, Scotland to reduce primary care broad-spectrum antimicrobial use. J Antimicrob Chemother 2015; 70 (08) 2397-2404
  • 124 Stevens DL, Dotter B, Madaras-Kelly K. A review of linezolid: the first oxazolidinone antibiotic. Expert Rev Anti Infect Ther 2004; 2 (01) 51-59
  • 125 Jones RN, Ross JE, Bell JM. , et al. Zyvox Annual Appraisal of Potency and Spectrum program: linezolid surveillance program results for 2008. Diagn Microbiol Infect Dis 2009; 65 (04) 404-413
  • 126 MacGowan AP. Pharmacokinetic and pharmacodynamic profile of linezolid in healthy volunteers and patients with Gram-positive infections. J Antimicrob Chemother 2003; 51 (Suppl. 02) ii17-ii25
  • 127 Meagher AK, Forrest A, Rayner CR, Birmingham MC, Schentag JJ. Population pharmacokinetics of linezolid in patients treated in a compassionate-use program. Antimicrob Agents Chemother 2003; 47 (02) 548-553
  • 128 Stalker DJ, Jungbluth GL. Clinical pharmacokinetics of linezolid, a novel oxazolidinone antibacterial. Clin Pharmacokinet 2003; 42 (13) 1129-1140
  • 129 Boselli E, Breilh D, Rimmelé T. , et al. Pharmacokinetics and intrapulmonary concentrations of linezolid administered to critically ill patients with ventilator-associated pneumonia. Crit Care Med 2005; 33 (07) 1529-1533
  • 130 Boselli E, Breilh D, Caillault-Sergent A. , et al. Alveolar diffusion and pharmacokinetics of linezolid administered in continuous infusion to critically ill patients with ventilator-associated pneumonia. J Antimicrob Chemother 2012; 67 (05) 1207-1210
  • 131 Vardakas KZ, Mavros MN, Roussos N, Falagas ME. Meta-analysis of randomized controlled trials of vancomycin for the treatment of patients with gram-positive infections. Mayo Clin Proc 2012; 87 (04) 349-363
  • 132 Walkey AJ, O'Donnell MR, Wiener RS. Linezolid vs glycopeptide antibiotics for the treatment of suspected methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a meta-analysis of randomized controlled trials. Chest 2011; 139 (05) 1148-1155
  • 133 Kalil AC, Murthy MH, Hermsen ED, Neto FK, Sun J, Rupp ME. Linezolid versus vancomycin or teicoplanin for nosocomial pneumonia: a systematic review and meta-analysis. Crit Care Med 2010; 38 (09) 1802-1808
  • 134 Zhanel GG, Homenuik K, Nichol K. , et al. The glycylcyclines: a comparative review with the tetracyclines. Drugs 2004; 64 (01) 63-88
  • 135 Rose WE, Rybak MJ. Tigecycline: first of a new class of antimicrobial agents. Pharmacotherapy 2006; 26 (08) 1099-1110
  • 136 Hoellman DB, Pankuch GA, Jacobs MR, Appelbaum PC. Antipneumococcal activities of GAR-936 (a new glycylcycline) compared to those of nine other agents against penicillin-susceptible and -resistant pneumococci. Antimicrob Agents Chemother 2000; 44 (04) 1085-1088
  • 137 Sun HK, Ong CT, Umer A. , et al. Pharmacokinetic profile of tigecycline in serum and skin blister fluid of healthy subjects after multiple intravenous administrations. Antimicrob Agents Chemother 2005; 49 (04) 1629-1632
  • 138 Muralidharan G, Micalizzi M, Speth J, Raible D, Troy S. Pharmacokinetics of tigecycline after single and multiple doses in healthy subjects. Antimicrob Agents Chemother 2005; 49 (01) 220-229
  • 139 Rodvold KA, Gotfried MH, Cwik M, Korth-Bradley JM, Dukart G, Ellis-Grosse EJ. Serum, tissue and body fluid concentrations of tigecycline after a single 100 mg dose. J Antimicrob Chemother 2006; 58 (06) 1221-1229
  • 140 Koomanachai P, Crandon JL, Banevicius MA, Peng L, Nicolau DP. Pharmacodynamic profile of tigecycline against methicillin-resistant Staphylococcus aureus in an experimental pneumonia model. Antimicrob Agents Chemother 2009; 53 (12) 5060-5063
  • 141 Koomanachai P, Kim A, Nicolau DP. Pharmacodynamic evaluation of tigecycline against Acinetobacter baumannii in a murine pneumonia model. J Antimicrob Chemother 2009; 63 (05) 982-987
  • 142 Freire AT, Melnyk V, Kim MJ. , et al; 311 Study Group. Comparison of tigecycline with imipenem/cilastatin for the treatment of hospital-acquired pneumonia. Diagn Microbiol Infect Dis 2010; 68 (02) 140-151
  • 143 Ramirez J, Dartois N, Gandjini H, Yan JL, Korth-Bradley J, McGovern PC. Randomized phase 2 trial to evaluate the clinical efficacy of two high-dosage tigecycline regimens versus imipenem-cilastatin for treatment of hospital-acquired pneumonia. Antimicrob Agents Chemother 2013; 57 (04) 1756-1762
  • 144 U.S. Food and Drug Administration. FDA Drug Safety Communication: Increased risk of death with Tygacil (tigecycline) compared to other antibiotics used to treat similar infections. Drugs 2011
  • 145 Ni W, Han Y, Liu J. , et al. Tigecycline treatment for carbapenem-resistant Enterobacteriaceae infections: a systematic review and meta-analysis. Medicine (Baltimore) 2016; 95 (11) e3126
  • 146 Daikos GL, Tsaousi S, Tzouvelekis LS. , et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother 2014; 58 (04) 2322-2328
  • 147 Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: an overview. Cold Spring Harb Perspect Med 2016; 6 (06) a027029
  • 148 Holm SE, Hill B, Löwestad A, Maller R, Vikerfors T. A prospective, randomized study of amikacin and gentamicin in serious infections with focus on efficacy, toxicity and duration of serum levels above the MIC. J Antimicrob Chemother 1983; 12 (04) 393-402
  • 149 Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis 1987; 155 (01) 93-99
  • 150 Panidis D, Markantonis SL, Boutzouka E, Karatzas S, Baltopoulos G. Penetration of gentamicin into the alveolar lining fluid of critically ill patients with ventilator-associated pneumonia. Chest 2005; 128 (02) 545-552
  • 151 Carcas AJ, García-Satué JL, Zapater P, Frías-Iniesta J. Tobramycin penetration into epithelial lining fluid of patients with pneumonia. Clin Pharmacol Ther 1999; 65 (03) 245-250
  • 152 Kirkpatrick P, Raja A, LaBonte J, Lebbos J. Daptomycin. Nat Rev Drug Discov 2003; 2 (12) 943-944
  • 153 Tally FP, DeBruin MF. Development of daptomycin for gram-positive infections. J Antimicrob Chemother 2000; 46 (04) 523-526
  • 154 Jacobus N, McDermott L, Lonks J, Boyce J, Snydman D. In vitro activity of daptomycin against resistant Gram-positive pathogens. . Paper presented at: Program and Abstracts of the Thirty-Eighth Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, CA; 1998
  • 155 Rybak MJ, Hershberger E, Moldovan T. Comparative in vitro activity of daptomycin versus vancomycin, linezolid, and Synercid against methicillin-resistant and susceptible staphylococci, vancomycin-intermediate susceptible Staphylococcus aureus (VISA) and vancomycin-susceptible Staphylococcus aureus. . Paper presented at: Program and Abstracts of the Thirty-Eighth Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, CA; 1998
  • 156 Woodworth JR, Nyhart Jr EH, Brier GL, Wolny JD, Black HR. Single-dose pharmacokinetics and antibacterial activity of daptomycin, a new lipopeptide antibiotic, in healthy volunteers. Antimicrob Agents Chemother 1992; 36 (02) 318-325
  • 157 Benvenuto M, Benziger DP, Yankelev S, Vigliani G. Pharmacokinetics and tolerability of daptomycin at doses up to 12 milligrams per kilogram of body weight once daily in healthy volunteers. Antimicrob Agents Chemother 2006; 50 (10) 3245-3249
  • 158 Dandekar PK, Tessier PR, Williams P, Zhang C, Nightingale CH, Nicolau DP. Determination of the pharmacodynamic profile of daptomycin against Streptococcus pneumoniae isolates with varying susceptibility to penicillin in a murine thigh infection model. Chemotherapy 2004; 50 (01) 11-16
  • 159 Safdar N, Andes D, Craig WA. In vivo pharmacodynamic activity of daptomycin. Antimicrob Agents Chemother 2004; 48 (01) 63-68
  • 160 Louie A, Kaw P, Liu W, Jumbe N, Miller MH, Drusano GL. Pharmacodynamics of daptomycin in a murine thigh model of Staphylococcus aureus infection. Antimicrob Agents Chemother 2001; 45 (03) 845-851
  • 161 Silverman JA, Mortin LI, Vanpraagh AD, Li T, Alder J. Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact. J Infect Dis 2005; 191 (12) 2149-2152
  • 162 Pertel PE, Bernardo P, Fogarty C. , et al. Effects of prior effective therapy on the efficacy of daptomycin and ceftriaxone for the treatment of community-acquired pneumonia. Clin Infect Dis 2008; 46 (08) 1142-1151
  • 163 Farber JE, Ross J. The use of aerosol penicillin and streptomycin in bronchopulmonary infections. Calif Med 1950; 73 (03) 214-217
  • 164 Poulakou G, Siakallis G, Tsiodras S, Arfaras-Melainis A, Dimopoulos G. Nebulized antibiotics in mechanically ventilated patients: roadmap and challenges. Expert Rev Anti Infect Ther 2017; 15 (03) 211-229
  • 165 Palmer LB. Ventilator-associated infection: the role for inhaled antibiotics. Curr Opin Pulm Med 2015; 21 (03) 239-249
  • 166 Anderson GG, Kenney TF, Macleod DL, Henig NR, O'Toole GA. Eradication of Pseudomonas aeruginosa biofilms on cultured airway cells by a fosfomycin/tobramycin antibiotic combination. Pathog Dis 2013; 67 (01) 39-45
  • 167 Bäckman P, Adelmann H, Petersson G, Jones CB. Advances in inhaled technologies: understanding the therapeutic challenge, predicting clinical performance, and designing the optimal inhaled product. Clin Pharmacol Ther 2014; 95 (05) 509-520
  • 168 Patton JS, Fishburn CS, Weers JG. The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc 2004; 1 (04) 338-344
  • 169 Kuhn RJ. Pharmaceutical considerations in aerosol drug delivery. Pharmacotherapy 2002; 22 (3, Pt 2): 80S-85S
  • 170 Dhanani J, Fraser JF, Chan H-K, Rello J, Cohen J, Roberts JA. Fundamentals of aerosol therapy in critical care. Crit Care 2016; 20 (01) 269