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Introduction

In addition to several other factors (e.g., type and viru-
lence of pathogen, general condition of host, immune
status), a substantial role is attributed to genetic factors
in the development of pediatric sepsis. Several studies
have found an association between changes in genes
encoding systemic inflammatory response syndrome
(SIRS) mediators and sepsis outcome. Some genetic var-
iants can cause structural changes in proteins or changes
in the amount of protein produced. Most commonly, this
variability only affects a single nucleotide (single-nucleo-
tide polymorphism, SNP). Genetic variants influence the

body’s susceptibility to the development of sepsis and
modify the processes of normal systemic inflammatory
response, impairing, or, on the contrary, improving dis-
ease outcomes. During SIRS, various causal factors
(e.g., trauma, inflammation, infection) trigger the synth-
esis of proinflammatory, for example, tumor necrosis
factor-α (TNF-α), interleukin (IL)-1, IL-6, IL-8, and com-
plement factors C3 and C5, as well as anti-inflammatory
cytokines, for example, IL-4 and IL-10. Interestingly, ge-
netic changes in components of the coagulation cascade
influence the prognosis of sepsis and may affect molecules
involved in pathogen recognition, pro- and anti-inflam-
matory cytokines, and other effector proteins (►Table 1).
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Abstract The mortality of childhood sepsis continues to be rather high. When it comes to
prevention and adequate therapy, individual differences and genetic alterations are
becomingmore andmore important. Thesemay affectmolecules involved in pathogen
recognition (e.g., lipopolysaccharide-binding protein, mannose-binding lectin, bacter-
icidal/permeability-increasing protein, Toll-like receptors), signal transduction path-
ways (e.g., cRel), proinflammatory (e.g., tumor necrosis factor-α, interleukin-1 [IL-1],
IL-6, IL-8) as well as anti-inflammatory cytokines (e.g., IL-4, IL-10, IL-1 receptor
antagonist), members of the coagulation cascade, and other molecules active in the
process of systemic inflammatory response syndrome (e.g., heat shock proteins,
complement system). The most common genetic polymorphisms are the so-called
single-nucleotide polymorphisms, which entail the change of a single base. Genetic
mutations have an impact on susceptibility, severity, and outcome of sepsis. Under-
standing such mutations may improve treatment efficiency; although there is a
considerably limited choice of causal treatments today, they may become available
upon future developments in genetic therapy.
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Molecules Involved In Pathogen Recognition

Lipopolysaccharide-Binding Protein
Lipopolysaccharide-binding protein (LBP) plays an impor-
tant role in pathogen recognition and hence in triggering the
immune response. First binding to gram-negative bacterial
lipopolysaccharide (LPS) to form a complex, LBP is then
bound to Toll-like receptor (TLR)-4/CD14/MD2 receptors of
macrophages, thereby activating these immunocytes.1,2 A
total of 112 SNPs have been identified in the LBP gene, the
most important being rs2232618 (T1412C, Phe436Leu). A
study conducted in a Chinese population has found that this
SNP increases sepsis and multiple organ failure (MOF) in-
cidence rates in relatively severe posttraumatic patients.3

Although the study involved an adult population, it is pre-
sumable that similar findings would be obtained in pediatric
subjects.

Bactericidal/Permeability-Increasing Protein
Bactericidal/permeability-increasing protein (BPI) is primar-
ily found in azurophilic granules of neutrophil granulocytes,
but also detectable on the cellular surface and in specific
granules of eosinophil granulocytes.4 It has a role in the
defense against gram-negative bacteria by damaging exter-
nal and internal bacterial membranes and neutralizing LPS,
and, on the other hand, playing a part in opsonization.5–7 Two
frequent polymorphisms have been identified, including the
mutation known as BPI Taq (G545C), a so-called silent
mutation since causing no change to the encoded amino
acid (Val182).8 It has, however, been found to be associated
with sepsis outcome in children, leading to a hypothesis that
it may be a marker of other, hitherto unknown functional
variants with which it is in a strong linkage disequilibrium.
The homozygous GG allele was present in 85% of children
with septic shock. No such association is currently known for
the other SNP, BPI 216 (A645G, Lys216Glu).9

NOD2/CARD15
The NOD2 molecule recognizes bacterial particles (e.g.,
peptidoglycans) and stimulates immune response.10 Its
most important polymorphism is the Leu1007fsinsC muta-
tion, which causes the produced protein to be unable to
activate the nuclear factor κB (NF-κB) molecule.11 This leads
to a slowdown ofmonocytic phagocytosis, which contributes
to the development of bacteremia and sepsis.

Toll-like Receptors
TLRs constitute a part of the innate immune system. To date,
as many as 11 types have been described.12 They recognize
what is referred to as “pathogen-associated molecular pat-
terns.”13 TLR signal pathways elicit the activation of common
transcription factors (NF-κB and mitogen-activated protein
kinases [MAPKs]) and result in the production of cytokines
IL-6, IL-10, and IL-12, as well as the costimulatory molecules
CD40 and B7. However, although various TLRs bring similar
or identical molecules (MyD88, NF-κB) into action during
their activation, they can elicit immune responses that are
different and unique to a single TLR type.

Toll-like Receptor 1
TLR-1 is found inmembranes ofmacrophages, dendritic cells,
eosinophils, basophils, andmast cells, forming a heterodimer
with TLR-2. Of the twomost common SNPs of the TLR-1 gene,
TLR1-7202A/G (Asn248Ser), which is found in the 5′ nontran-
scribed region of the TLR gene, shows a stronger association
with clinical outcome than TLR11804G/T (Ser602Ile), which en-
codes a protein located in the transmembrane domain.14

TLR1-7202G is a hypermorphic allele strongly associated
with sepsis-related organ damage and mortality in the
American population.15 Increased receptor density on the
cellular surface owing to the mutation is thought to be
responsible for this effect. In the presence of the TLR11804T
(602Ile) allele, NF-κB induction is intensified in Staphylococcus
aureus infection.16 With another SNP, TLR11805G/T, when the
T allele was present in a homozygous form, intensive care
unit length of stay significantly increased in septic children
whose blood cultures were positive. Compared with G/G
homozygous patients, length of stay was also longer in G/T
heterozygous cases, which is explained by an increase in
neutrophil activation rates when the T allele is present.17

Toll-like Receptor 2
TLR-2 is the most important member of the receptor family,
having a role in the recognition of various bacterial lipopro-
teins.18 Several studies have proven that TLR-2 has a funda-
mental role in antibacterial defense. The TLR-2 gene’s best
known polymorphism is TLR-2 Arg753Gln, which inhibits
tyrosine phosphorylation, dimer formation with TLR6, and
the buildup of MyD88, and affects NF-κB activation.19,20

Consequently, peptidoglycan- and lipopeptide-triggered in-
tracellular signal transduction and cytokine secretion are
compromised, leading to a weakened immune response,
which may result in the onset of severe sepsis.21 Although
a study on a smaller group of Asian adults detected no clear
association, and no major pediatric studies were completed
so far, it is presumed that findings similar to those in adults
would be obtained in children. The role in sepsis of another
polymorphism, TLR2 Arg677Trp, has not been investigated,
but it is clear that this predisposes children to infections
caused by S. aureus and other pathogens.

Toll-like Receptor 4
As part of the innate immune system, TLR-4 plays an im-
portant role in the defense against gram-negative bacteria,
but it also recognizes mycobacterial and fungal proteins, as
well as being activated by endogenous ligands. Compounds
synthesized due to the signal transduction process triggered
by TLR-4 include TNF-α, IL-1β, and interferon-β (IFN-β),
amongothers. There are two polymorphismsknown to affect
receptor function, Asp299Gly (rs4986790) and Thr399Ile
(rs4986791), which cause cytokine synthesis rates to drop,
with a consequential increase in susceptibility to gram-
negative bacteria.22 Results concerning a link between these
SNPs and sepsis are controversial; haplotype Asp299Gly/
Asp299Gly seems to induce enhanced TNF-α synthesis in
response to LPS, thus predisposing to sepsis development,
whereas haplotype Asp299Gly/Thr399Ile has no or limited
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Table 1 The most important genetic polymorphisms in sepsis

Gene Polymorphism Consequence References

LBP rs2232618 (T1412C,
Phe436Ile)

Increases sepsis and MOF incidence rates in relatively severe posttrau-
matic patient

3

BPI Taq (G545C) The GG allele associates with sepsis outcome in children 9

NOD2/CARD15 Leu1007fsinsC The produced protein unable to activate the NF-κB 11

TLR-1 �7202A/G (Asn248Ser) Strongly associated with sepsis-related organ damage and mortality 15

1805G/T The TT allele increases the intensive care unit length of stay in septic
children

17

TLR-2 Arg753Gln Inhibits tyrosine phosphorylation, dimer formation with TLR-6, and the
buildup of MyD88, and affects NF-κB activation

19,20

Arg677Trp Predisposes children to infections caused by Staphylococcus aureus

TLR-4 rs4986790
(Asp299Gly);
rs4986791
(Thr399Ile)

Cause cytokine synthesis rates to drop, with a consequential increase in
susceptibility to gram-negative bacteria

22

haplotype Asp299Gly/
Asp299Gly

Induces enhanced TNF-α synthesis in response to LPS, predisposes to
sepsis development

23–25

rs1927907 Plays a role in the development of S. aureus sepsis 26,27

CD14 rs2569190 (�159C/T) Leads to increased CD14 levels 32

MBL B,C,D variants Causes the protein’s serum levels to drop 35–38

cRel rs842647
(A61119471G),
rs13031237
(G61136129T)

rs842647�G increases the risk of MOF in septic patients 40

TNF-α �308G/A TNF2 (A) allele increases TNF-α secretion and mainly affects sepsis onset
risks rather than outcomes

43–45

TNF-β TNFB1,
TNFB2

TNFB1 causes elevated serum levels, and hence increased mortality, in
septic children

47

IL-1α �889C/T Causes elevated IL-1α expression, which some studies describe as being
associated with sepsis

52

IL-1β þ3954C/T Changes splice donor site, leading to the synthesis of fragile, inactive
molecules; the T allele increases IL-1β production induced by LPS; the
presence of TT alleles carries a reduced risk of sepsis

52–54

�511G/A Elevates IL-1β levels in response to endotoxins

�31C/T Affects transcription factor binding sites, hence transcription activity

IL-6 �174G/C The C allele is associated with lower plasma levels; the G allele seems to
be protective against sepsis

62,63

Haplotype variants
(�174/1753/2954)

Increase mortality or MOF 64

IL-8 �251T/A (rs4073) Significantly increases the risk of severe sepsis in newborns; the T allele is
protective against sepsis in women

66

rs1126647 The A allele is protective against sepsis in women 70

rs2227306 The C allele represents an elevated risk of sepsis in men

IFN-γ �1616T/C (rs2069705) The T allele has a protective effect against sepsis development 72

þ3234C/T
(rs2069718)

The C allele protects from severe sepsis

�1616/�764/ þ 874
haplotype

The CTT haplotype is protective against sepsis; TAC haplotype is
associated with susceptibility to sepsis and protects against severe sepsis

HMGB1 1377delA Significantly makes worsen late-phase sepsis mortality 76

982C/T Increases early mortality risk in sepsis

rs1045411 (2262G/A) The A allele causes far more severe inflammatory response than the GG
genotype

77
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Table 1 (Continued)

Gene Polymorphism Consequence References

IL-1RA 86 base-pair-long VNTR The A2 allele causes elevated IL-1α, and even higher IL-1β levels; the
resulting lower IL-1α:IL-1β ratio leads to more intensified and lengthier
inflammatory response and also results in reduced IL-1RA levels in
severely septic patients

79–81

IL-10 �1082(A/G) The A allele is associated with susceptibility to sepsis, whereas the G allele
causes enhanced IL-10 production and increases mortality in severe
sepsis

83,84

PC (�1654C/T, �1641A/G)
single haplotype

The homozygous GC genotype is associated with significantly lower PC
levels increasing the propensity to thrombosis in sepsis; it also worsens
outcomes by causing hypotension
The homozygous TA genotype has a protective effect on sepsis out-
comes
The genotype �1641A/A, worsens survival and aggravates systemic
inflammation

89–91

PAI-1 �675 4G/5G insertion/
deletion

The 4G/4G genotype results in elevated plasma levels and activity and
increases susceptibility to sepsis and mortality in children with menin-
gococcal infection, as well as raises the incidence of DIC

93,94

Fibrinogen �854G/A,
�455G/A,
þ9006G/A

The GAA haplotype causes elevated fibrinogen levels owing to the
�455A allele, yet it reduces mortality and MOF incidence in sepsis

100–103

FcyRIIa R131H The R131 allotype causes the receptor to bind the IgG2 molecule with a
reduced affinity, which results in a slowdown of IgG2-opsonized
phagocytosis

110–112

FcyRIIIa Val158Phe Modifies the receptor’s affinity to IgG1, IgG2, and IgG4 116,117

FcyRIIIb switch in four amino
acids (Na1/Na2),

Affects the extracellular domain and has a role in protein glycosylation
and hence the phagocytosis of particles opsonized by IgG1 and IgG3

118–120

CFH Y402H Has a protective effect because inhibition of the alternative pathway
becomes muted and has a higher baseline level of activity

131

�496C/T The CC genotype, accompanied by elevated CFH levels, is a factor of
increased risk for meningococcal infection

132

MIF �173 G/C (rs755622),
�794 CATT5–8
(rs5844572)

CATT7/8 is associated with severely complicated malaria, mortality of
severely septic patients, and survival in community-acquired pneumonia
The low-expression allele (CATT5) has a protective effect against me-
ningococcal infection in children
Haplotype �173C/�794CATT7 may help identify patients at increased
risk of sepsis mortality

137–139,143

HSPA1A rs1008438 The A allele causes hematological impairment 147

rs1043618 The C allele leads to longer intensive care unit treatment periods in H1N1
infection and to a higher incidence of liver failure and MOF in severe
trauma cases

HSPA1B 1538G/A The A allele causes elevated TNF-α and IL-6 levels 146

1267A > G
(rs1061581)

Increases the risk of sepsis in adults with community-acquired pneu-
monia
The AA genotype is clearly associated with sepsis secondary to com-
munity-acquired pneumonia
The A allele causes hematological impairment

147,148

HSPA1L 2437C > T
(rs2227956)

The C allele causes elevated TNF-α and IL-6 levels and is also a significant
risk factor for liver failure and MOF

146

HSP70–2 HSP70–2A/G The G allele is associated with lower protein levels and represents an
increased risk for sepsis
The A allele, a link has been found with TNF-β2, which worsens outcomes
in sepsis

149

DDAH2 �449G/C The �449G allele has been shown to result in lower ADMA levels and is
more likely to be present in sepsis accompanied by “cold shock”

156

Abbreviations: ADMA, asymmetric dimethylarginine; BPI, bactericidal/permeability-increasing protein; CFH, complement factor H; DDAH,
dimethylarginine dimethylaminohydrolase; DIC, disseminated intravascular coagulation; HMGB1, high mobility group box 1; IFN-γ, interferon
gamma; IgG, immunoglobulin G; IL, interleukin; IL-1RA, interleukin-1 receptor antagonist; LBP, lipopolysaccharide-binding protein; LPS, lipopoly-
saccharide; MBL, mannose-binding lectin; MIF, macrophage migration inhibitory factor; MOF, multiple organ failure; NF-κB, nuclear factor κB; PAI-1,
plasminogen activator inhibitor 1; PC, protein C; TLR, Toll-like receptor; TNF, tumor necrosis factor; VNTR, variable number of tandem repeats.
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effect on receptor function.23–25 Selected studies conclude
that rs1927907 polymorphism plays a role in the develop-
ment of S. aureus sepsis; in this case, the receptor is activated
by substances other than LPS, indicating that TLR-4 probably
also responds to endogenous ligands.26,27

CD14
The CD14 protein has an important role in the recognition of
gram-negative bacteria since it activates the NF-κB pathway
by binding to TLR4 as part of the LPS–CD14–MD2 complex.1

CD14 is found on the surface of monocytes, macrophages,
and neutrophil granulocytes in amembrane-linked form, but
a soluble form also exists.28 Elevated CD14 levels pose an
increased risk to sepsis and MOF.29,30 Many polymorphisms
of the gene are known; the most commonly described
mutation being rs2569190 (-159 C/T) in the promoter region,
leading to increased CD14levels.31 Its associationwith sepsis
is controversial; although several studies have reported
about a link between this polymorphism and sepsis, mainly
in the Asian population, but further studies are needed for a
clear standpoint in this issue.32

Mannose-Binding Lectin
Mannose-binding lectin (MBL) is a selectin molecule, which,
by binding tomannose and bacterial N-acetyl galactosamine
components, activates the complement system through the
lectin pathway.33 There are three known polymorphisms of
the MBL-2 gene at the codon 52, 54, and 57 (referred to as
variants B, C, andD, respectively, or collectively as O,whereas
the wild type denoted as A). The mutations cause an amino
acid switch, which interferes with oligomerization, causing
the protein’s serum levels to drop. Patients with MBL defi-
ciency aremore susceptible to sepsis. MBL levels are lower in
A/O heterozygosis, whereas circulatory MBL is almost com-
pletely absent in O/O homozygous or compound heterozy-
gous cases.34 Added to these threemutations, there are three
major polymorphisms in the promoter region, one of which
(-221G/C, also known as Y/X) is a major factor of MBL
expression.35 The three polymorphisms in exon 1 are in
linkage disequilibrium with the promoter X/Y polymorph-
ism, with Y being the only variant with a link to each.36,37

Polymorphisms Affecting Signal
Transduction Pathways

cRel Polymorphism
The cRel protein is a subunit of NF-κB. The latter is a protein
complex with a central role in the body’s response to infec-
tions. It is activated through two possible pathways. The
canonical pathway involves TLR as well as proinflammatory
cytokines (e.g., TNF-α, IL-1) activating the RelA protein,
which has proinflammatory effects and activates genes
responsible for the cell’s survival.38 The other one is an
alternative pathway initiated by LTb, CD40L, BAFF, and
RANKL, followed by activation of the RelB/p52 complex,
resulting in transcription of genes responsible for lymph
organogenesis and B-cell activation. There are two important
polymorphisms of the cRel gene: rs842647 and rs13031237;

the former one leading to an A!G substitution at location
61119471 in intron 2, whereas the latter eliciting a G!T
switch at location 61136129, intron 4, chromosome 2. It has
been shown that the minor allele rs842647�G increases the
risk of MOF in septic patients, whereas no association with
the severity of septic shock has been found for the allele
rs13031237�T.39

Proinflammatory Cytokines

Tumor Necrosis Factor-α, Tumor Necrosis Factor
Receptor
TNF-α is a proinflammatory cytokine involved in the process
of SIRS and in initiation of the acute phase reaction. Dom-
inantly produced by activated macrophages, TNF-α can also
be a product of CD4þ T-lymphocytes, neutrophils, mast cells,
eosinophilic granulocytes, and neurons. Its primary function
is immune cell regulation. Bound by either of two receptors,
TNFR1 and TNFR2, TNF-α can then activate three pathways:
NF-κB, MAPK, and the so-called cell-death pathway. Many
SNPs at the TNF/LTA locus have been identified as affecting
TNF-α production and being associated with sepsis onset or
outcomes.40 The most commonly knownmutation is -308G/
A; notable examples also include the polymorphisms -238G/
A and LTA (TNF-β) þ249 and þ365.41 The TNF-α -308G/A
polymorphism affects the promoter region and causes one
TNF1 (G) and one TNF2 (A) allele to be present, the latter
leading to increased TNF-α secretion, a condition mainly
affecting sepsis onset risks rather than outcomes.42–44 As for
-238G/A SNP, the -238A allele results in reduced TNF-α
levels.45 The associated TNF-β polymorphism entails a
TNFB1 and a TNFB2 allele, with the latter causing elevated
serum levels, and hence increased mortality, in septic
children.46

Interleukin-1
Members of the IL-1 family have an important role in inflam-
matory responses and the pathomechanism of sepsis. The
family includes one anti-inflammatory and twoproinflamma-
tory (IL-1α and IL-1β) cytokines.47–49The genes are in a cluster
on the long arm of chromosome 2 (2q13–21).50 A total of five
SNPs that can be linked to sepsis are known in the IL-1 gene.
These include -889C/T in the promoter region of the IL-1α
gene, -511G/A and -31C/T in the promoter region of the IL-1β
gene, and þ3954C/T in exon 5.51 þ3954C/T polymorphism
causes no amino acid switch, but changes splice donor site,
leading to the synthesis of fragile, inactive molecules.52

The T allele increases IL-1β production induced by LPS.53

It has also been shown that the presence of TT alleles
carries a reduced risk of sepsis; however, this is inconsistent
with the observation that elevated IL-1β levels represent
greater susceptibility to sepsis. Additional factors are pre-
sumed to be in the background of this controversy; further
studies into the link between this polymorphism and sepsis
are necessary. The IL-1α -889C/T mutation causes elevated
IL-1α expression, which some studies describe as being asso-
ciated with sepsis. Although IL-1β -511G/A elevates IL-1β
levels in response to endotoxins, and IL-1β -31C/T affects
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transcription factor binding sites and hence transcription
activity, the link between these SNPs and sepsis remains
controversial.51

Interleukin-6
IL-6 is a proinflammatory cytokine playing an important role
in evolvement of the inflammatory response. IL-6 gene
polymorphisms may have a role in the development and
outcomes of childhood sepsis.54,55 It has been reported that
in the IL-6 -174G/C mutation, the C allele is associated with
lower plasma levels; however, the results are unclear, with
some researchers having found such relationship in new-
borns only, and other studies pointing out that plasma levels
of IL-6 variants depend on sex, age, body mass index, and
general health.56–59 An association with better survival has
been detected in GG homozygous cases, and the G allele
seems to be protective against sepsis.60,61 Moreover, reports
also describe a link between haplotype variants (e.g., -174/
1753/2954) and increased mortality or MOF.62 The other
polymorphism is -572G/C, where the C allele causes a similar
deviation in plasma levels compared with the earlier poly-
morphism.59 However, the relationship of this variant with
sepsis remains unknown.

Interleukin-8
IL-8, also known as neutrophil chemotactic factor, is a
chemokine produced by macrophages, epithelial cells, air-
way smooth muscle cells, and endothelial cells. It has two
primary functions including chemotaxis induction in neu-
trophil and other granulocytes, and having a role in phago-
cytosis induction and angiogenesis. Elevated IL-8 levels are
associated with the development of severe sepsis.63 Baseline
IL-8 level is one of the most important prognostic factors for
sepsis outcome.64 There is a link between IL-8 gene poly-
morphisms and sepsis onset; SNP IL-8�251T/A (rs4073) has
been described to significantly increase the risk of severe
sepsis in newborns.65 The findings are controversial, with
some studies identifying the T allele as causing elevated IL-8
levels and others claiming the same about the A allele even
examples of a failure to detect a difference in IL-8 levels for
the different alleles that exist.66–68 However, the T allele has
been found to be protective against sepsis in women. The
same was identified in rs1126647 mutation for the A allele.
In both cases, a greater incidence of the protective allele was
confirmed in women. As for the rs2227306 mutation, the
C allele represented an elevated risk of sepsis in men.69

Interferon Gamma
INF gamma (IFN-γ) is a cytokine that is an important
component of the innate and acquired immunity with a
primary role in antiviral defense and an activity against
selected bacterial and protozoal species. It is mainly pro-
duced by NK and NKT cells, but can also be synthesized by
CD4þ Th1 and CD8þ cytotoxic T cells. IFN-γ is an important
activator of macrophages and induces major histocompat-
ibility complex II (MHCII) expression. Its importance is
rooted in its direct viral replication inhibitory capacity, as
well as immunostimulant and immunomodulatory effects.70

Highlights of IFN-γ gene polymorphisms include four entities
with links to immunological pathologies. Two of these,
-1616T/C (rs2069705) and -764G/C (rs2069707), are found
in the promoter region, with another located in intron 1
(þ874A/T [rs2430561]) and yet another in intron 3 (þ3234C/
T [rs2069718]). Alleles -1616T, -764G, þ874A, and þ3234C
have been shown to cause elevated IFN-γ levels compared
with their counterpart variants. Reports also indicate that
the SNPs þ874 and þ3234 are in a “linkage disequilibrium”

with each other. Studies have demonstrated that the -1616T
allele has a protective effect against sepsis development and
that the þ3234C allele protects from severe sepsis. Research
into the haplotypes of -1616, -764, and þ874 found that the
CTT haplotype is protective against sepsis, but only mini-
mally protective against the development of severe sepsis,
whereas the TAC haplotype is associated with susceptibility
to sepsis and protects against severe sepsis. The TAC haplo-
type comprises three alleles encoding enhanced gene ex-
pression and represents the most common combination,
with CTT being the rarest. Patients whose IFN-γ expression
is enhanced have a greater propensity to develop sepsis but
are at a lower risk of severe sepsis, whereas those with lower
IFN-γ expression rates are less prone to sepsis.71

High Mobility Group Box 1
High mobility group box 1 (HMGB1), also known as nuclear
nonhistone DNA-binding protein, is a multifunctional cyto-
kine with a role in late-phase inflammatory response. It is
mainly produced by macrophages and monocytes in re-
sponse to LPS through a TNF-α-dependent mechanism, but
it is also released by necrotic but not apoptotic cells, which
is a way for the body to differentiate between these
cells.72,73 In addition to its cell-damaging effect, HMGB1
also has a protective function in that it elicits stem cell
migration into inflamed areas, promoting regeneration.74

HMGB1 levels are significantly higher in septic patients, and
in mice model, anti-HMGB1 antibodies significantly reduce
mortality.73 The HMGB1 gene has many polymorphisms,
two of which have a significance in sepsis; one such
mutation is -1377delA, which has been shown to signifi-
cantly worsen late-phase sepsis mortality. The other poly-
morphism is 982C/T, which is found in exon 4 and is
associated with significantly lower HMGB1 levels than the
homozygous 982C/C genotype, thereby increasing early
mortality risk in sepsis.75 Research in Korean children has
found that the A allele in rs1045411 (2262G/A) polymorph-
ism causes far more severe inflammatory response than the
GG genotype.76

Anti-Inflammatory Cytokines

Interleukin-1 Receptor Antagonist
As suggested by its name, the IL-1 receptor antagonist binds
to the IL-1 receptor to inhibit its function. There is an 86-
base-pair long VNTR (variable number of tandem repeats)
sequence in intron 2 of the IL-1 receptor antagonist (IL-1RA)
gene, involving five different alleles (1–5) of different repeat
frequencies (4, 2, 5, 3, and 6 repetitions). These are further
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classified into long (L: 1, 3, 4, 5) and short (2 only) genotypes,
with possible combinations including L/L, L/2, and 2/2.77 The
A2 allele causes elevated IL-1α, and even higher IL-1β levels.
The resulting lower IL-1α:IL-1β ratio leads to more intensi-
fied and lengthier inflammatory response.78,79 This allele
also results in reduced IL-1RA levels in severely septic
patients.80 All this indicates that this polymorphism plays
an important role in immune response regulation.

Interleukin-10
L-10, also known as “human cytokine synthesis inhibitory
factor,” is an anti-inflammatory cytokine with a central role
in immunoregulation and inflammatory processes. Its func-
tions include down-regulation of cytokines expressed by
Th1 cells, moreover that of MHCII antigens and macropha-
geal costimulant molecules.81 It also promotes B-cell sur-
vival, proliferation, and antibody production. IL-10 inhibits
NF-κB activity and has a role in regulation of the JAK-STAT
signal pathway. Several IL-10 polymorphisms are known, of
which SNP -1082(A/G) in the promoter region has been
linked to sepsis. The presence of the A allele is associated
with susceptibility to sepsis, whereas that of the G allele
causes enhanced IL-10 production and increases mortality
in severe sepsis.82,83 No such relationship has been found
for the other two frequent polymorphisms (-592 and
-819).84

Polymorphisms Affecting the Coagulation
System

The coagulation system is activated in sepsis in response to
bacterial endotoxins, resulting in enhanced expression of
tissue factor in monocytes and endothelial cells, thus acti-
vating the extrinsic pathway of the coagulation cascade.
However, sepsis essentially leads to complex dysregulation
of procoagulant, anticoagulant, and fibrinolytic proteins. The
presence of various gene polymorphisms is also important in
relation to the outcome of sepsis-related disseminated in-
travascular coagulation (DIC).

Protein C
Protein C (PC) is a vitamin K dependent zymogenic serine
protease synthesized in the liver; once activated and bound
to thrombomodulin, it inactivates factors Va and VIIIa in the
presence of protein S, PL, and Ca2þ, thereby blocking any
further production of thrombin. It also has anti-inflamma-
tory and antiapoptotic effects.85Of the polymorphisms of the
PC gene, two located in the gene’s 5′ nontranscribed region
(-1654C > T, -1641A > G) bear importance.86,87 These two
polymorphisms form a single haplotype where the homo-
zygous GC genotype is associatedwith significantly lower PC
levels, increasing the propensity to thrombosis in sepsis; it
alsoworsens outcomes by causing hypotension.88 Thehomo-
zygous TA genotype has a protective effect on sepsis out-
comes because the higher PC levels decrease the incidence of
DIC in sepsis, thereby improving survival.89 The genotype
-1641A/A, however, worsens survival and aggravates sys-
temic inflammation.90

Plasminogen Activator Inhibitor 1
The plasminogen activator inhibitor 1 (PAI-1) molecule is a
serine protease inhibitor blocking tissue plasminogen acti-
vator (tPA) and urokinase plasminogen activator, the activa-
tors of plasminogen and hence fibrinolysis; it also forms a
complex with activated PC (APC) to inhibit the latter’s func-
tion. Based on this behavior, PAI-1 has a procoagulant effect.
Several polymorphisms of the PAI-1 gene are known. The
most frequently studied polymorphismwith an outstanding
importance regarding sepsis is the -675 4G/5G insertion/
deletion polymorphism in the promoter region, affecting
PAI-1 plasma levels and activity.91 It has been shown that
presence of the 4G/4G genotype results in elevated plasma
levels and activity and increases susceptibility to sepsis and
mortality in childrenwith meningococcal infection, and also
raises the incidence of DIC.92,93 Its further consequences
include elevated risks of septic shock and MOF in pneumo-
nia-induced sepsis.94 The significance of this genetic variant
lies in the fact that the administration of tPA and APC is a
therapeutic option that might improve outcomes.95–98

Fibrinogen
Fibrinogen, or factor I, is synthesized in the liver. As part of
the coagulation cascade, it is converted into fibrin by throm-
bin. Of the polymorphisms of the fibrinogen-β gene, research
into -854G/A, -455G/A, and þ9006G/A revealed that even
though the GAA haplotype causes elevated fibrinogen levels
owing to the -455A allele, it reduces mortality and MOF
incidence in sepsis.99–102 This might be explained by the fact
that in addition to its role in coagulation, fibrinogen also
takes part in the inflammatory process since it is amember of
the acute phase proteins; it promotes neutrophil and IL-8
secretion as well as exerts an antiapoptotic effect on en-
dothelial cells and neutrophils.103–107

Effector Molecules

Fcy Receptors
Fcy receptors earned their name by binding the Fc region of
immunoglobulin G (IgG). They can also be found on many
immune and nonimmune cell types. Their task is to stimulate
phagocytes or cytotoxic cells, which destroy pathogens or
infected host cells by antibody-mediated phagocytosis or
through a mechanism referred to as antibody-dependent
cell-mediated cytotoxicity. They have three subclasses, FcyRI
(FcyrIa), FcyRII (a, b, c), and FcyRIII (a, b), eachwith a different
level of affinity to various IgG antibodies. Several polymorph-
isms affecting receptor function have been described in these
three groups.108 The most important polymorphism of the
FcyRIIa gene results in an arginine–histidine switchat position
131 of the protein (R131H); the R131 allotype causes the
receptor to bind the IgG2 molecule with a reduced affinity,
which results in a slowdown of IgG2-opsonized phagocyto-
sis.109–111 IgG2 is the major antibody subtype in the defense
against encapsulated bacteria (e.g., Neisseria meningitidis);
this mutation increases the susceptibility for these patho-
gen.109,112,113 The most significant polymorphism of FcyRIIIa
causes a valine–phenylalanine switch at position 158, which
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modifies the receptor’s affinity to IgG1, IgG2, and IgG4.114,115

For FcyRIIIb, the polymorphism causes a switch in four amino
acids (Na1/Na2), which affects the extracellular domain and
has a role in protein glycosylation and hence the phagocytosis
of particles opsonized by IgG1 and IgG3.116–118 Phagocytosis is
more efficient in FcyRIIIb Na1/Na1 homozygosity. Research
into the polymorphisms FcyRII H131 and FcyRIIIa Na2 has
revealed that both are associated with an increased suscept-
ibility tomeningococcal infection.119–124 Although the results
are controversial, most studies confirm these findings.

Other Molecules

Complement System
The complement system is part of the innate immune system
that enhances (complements) the functions of antibodies
and phagocytic cells, thus helping to eliminate pathogens
and remove damaged cells; on the other hand, it promotes
inflammation and directly damages pathogen’s mem-
branes.125 Its activation may occur through three pathways:
the classical, lectin, and the alternative pathways.126 It is
important to note that the alternative pathway is constantly
activated for antibacterial defense and that it also enhances
the other two pathways.127 The regulatory role of comple-
ment factor H (CFH) is extremely important in preventing
uncontrolled complement activation and excess damage.
CFH levels gradually rise from as early on as the acute phase
of inflammation.128 The effect of complement factor B is the
exact opposite, that is, potentiating function of the alter-
native pathway. The classical and lectin pathways are acti-
vated by the C1q protein and MBL, respectively. Gene
polymorphisms in components of the complement system
affect normal functioning of the system. Such mutations
most commonly affect CFH. By inhibiting CFH function, CFH
Y402H polymorphism has a protective effect because inhibi-
tion of the alternative pathway becomes muted and has a
higher baseline level of activity.129 The CFH -496C/T CC
genotype, accompanied by elevated CFH levels, is a factor
of increased risk for meningococcal infection.130 MBL-2
polymorphisms increase the risk of sepsis. In summary,
mutations that facilitate rapid and efficient activation of
the complement system are protective against sepsis.

Macrophage Migration Inhibitory Factor
“Macrophage migration inhibitory factor” (MIF) is an im-
portant regulator of the innate immune system.131 It plays an
important role in acute and chronic inflammatory processes
and autoimmune diseases. In response to stimulatory effects
of bacterial antigens, white blood cells produce MIF,132

which binds to CD74 molecules on the surfaces of other
immunocytes, triggering the acute immune response. MIF is
constantly expressed by macrophages and monocytes and
has autocrine, paracrine, and endocrine effects when se-
creted into the extracellular space. Interestingly, glucocorti-
coids also induceMIF secretion,which, in turn, counters their
anti-inflammatory effect. For note, the frontal hypophysis
also produces MIF in response to trauma.133 There are four
known polymorphisms to the MIF gene. The SNPs þ254

(þ254�T/C) and þ656 (þ656�C/G) are in the introns but
bear no functional significance.134 This is in contrast with
the other two polymorphisms situated in the promoter
region. One of them is an SNP (�173G/C; rs755622), whereas
the other is a microsatellite (�794 CATT5–8; rs5844572). The
most frequent allele in the Caucasian population is CATT6.
Genotypes are classified into a so-called low-expression
group with lower MIF levels (5-CATT allele or -173GG) and
a high-expression group (7-CATT or the -173C alleles). The
-173G allele is much more prevalent than the C allele.
Infectious disease studies have shown that high-expression
MIF alleles (CATT7/8) or haplotypes are associated with
severely complicated malaria, mortality of severely septic
patients, and survival in community-acquired pneumo-
nia.135,136 Also, the low-expression allele (CATT5) has a
protective effect against meningococcal infection in chil-
dren.137 This suggests that the effects of MIF polymorphisms
are modified by age, infection site, pathogen type, and other
confounding factors (e.g., selection bias).138–140 Another
study has reported that although the haplotype -173C
/-794CATT7 is not useful as a susceptibilitymarker for sepsis,
it may still help identify patients at increased risk of sepsis
mortality.141 The practical significance of research into MIF
polymorphisms lies in an ongoing phase 1/2a study for the
efficacy assessment of an anti-MIF monoclonal antibody
(BAX/imalumab) in patients with metastatic colorectal car-
cinoma or ovarian cancer with malignant ascites.134 Poten-
tial future use of the antibody might even include the
treatment of severe sepsis.

Heat Shock Proteins
Heat shock proteins are members of a family of proteins
produced in response to cells being exposed to stressful
conditions. Some members of this family have “chaperone”
function; they stabilize newly synthesized proteins, facilitate
correct folding, and help damaged proteins to refold.142 As for
the immune system, themost important heat shock protein is
HSP70 located in the cell membrane because it plays a role in
antigen binding and presentation to immunocytes. The gene
encoding HSP70 is found in the HLA locus on the short arm of
chromosome 6. There are many known polymorphisms to the
HSP70 gene, of which HSPA1A, HSPA1B, and HSPA1L have
significance in relation to sepsis. Polymorphisms of the
HSPA1B and HSPA1L genes modify the levels of selected
cytokines and thus the process of SIRS. For example, the A
allele in HSPA1B 1538G/A, as well as the C allele in HSPA1L
2437 T > C, causes elevated TNF-α and IL-6 levels, and the
C allele is also a significant risk factor for liver failure and
MOF.143 It has been reported that 1267A > Gmutation in the
HSPA1B gene increases the risk of sepsis in adults with com-
munity-acquired pneumonia.144,145 The A allele of rs1061581
and the rs1008438 mutation both cause hematological
impairment, whereas the C allele of rs1043618 leads to longer
intensive care unit treatment periods inH1N1 infection and to
a higher incidence of liver failure and MOF in severe trauma
cases.144 Another study points out that AA (rs1061581)
genotype of the HSPA1B gene is clearly associated with
sepsis secondary to community-acquired pneumonia.145
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Thispolymorphism is ina strong “linkagedisequilibrium”with
that of the promoter regions of HSPA1A and HSPA1B.146

Investigations into the HSP70–2A/G polymorphism found
that the G allele is associated with lower protein levels and
represents an increased risk for sepsis. For the A allele, a link
has been found with TNF-b2, which worsens outcomes in
sepsis.146

Dimethylarginine Dimethylaminohydrolase
Dimethylarginine dimethylaminohydrolase (DDAH) meta-
bolizes the asymmetric dimethylarginine (ADMA) molecule,
which is an inhibitor of inducible nitric oxide synthase.147

The effects of NO include vasodilation, intense inflammatory
response, and reduced thrombocyte and leukocyte adhesion,
and it also has a free radical scavenger function. ADMA is
synthesized from L-arginine by protein arginine methyl-
transferase. There is an association between ADMA levels
and sepsis.148 The DDAH2 gene has two relatively known
polymorphisms: -871 6 g/7 g insertion/deletion and the SNP
-449G/C.148–151 The latter has a significance in sepsis since
the -449G allele has been shown to result in lower ADMA
levels and is more likely to be present in sepsis accompanied
by “cold shock.”152

Discussion

Changes to genes of sepsismediators have an important role in
the susceptibility to the severity and outcome of sepsis.
Currently available choices in gene therapy are limited; never-
theless, options do exist and include antibody treatment
against abnormally high levels of mediators produced by a
mutation (e.g., monoclonal antibodies used against MIF), or
potential administration of tPA or APC in genetic alterations of
PAI-1.With theadvance ofmolecular geneticmethods, genetic
testing, even screening, of patient groups at high risk of sepsis,
for example, children with chronic diseases (leukemia etc.),
may become reality in the future. This would offer a way to
reduce the risk of sepsis onset by gene therapy in selected
patients carryingmutations; in the interim until such therapy
is available, stricter observation and more aggressive sepsis
therapy could improve outcomes in these patients. This, how-
ever, necessitates further research to clarify in detail the
sepsis-related roles of each polymorphism.
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