Digestive Disease Interventions 2017; 01(02): 074-082
DOI: 10.1055/s-0037-1603812
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Characteristics and Unmet Clinical Needs Related to Hepatocellular Carcinoma

Jordan Newson*
1   Department of Biology, Albion College, Albion, Michigan
,
Nickolas Kinachtchouk*
2   Department of Biochemistry, Albion College, Albion, Michigan
,
Kyle M. Schachtschneider
3   Department of Radiology, University of Illinois, Chicago, Illinois
,
Regina M. Schwind
3   Department of Radiology, University of Illinois, Chicago, Illinois
,
Lawrence B. Schook
3   Department of Radiology, University of Illinois, Chicago, Illinois
4   Department of Animal Sciences, University of Illinois, Urbana, Illinois
› Author Affiliations
Further Information

Publication History

20 December 2016

04 May 2017

Publication Date:
08 June 2017 (online)

Abstract

Advances in biomedical research require animal models that accurately recapitulate human disease. Without such models, progress against human diseases such as cancer is significantly hindered. Here, we present the current landscape on available and emerging hepatocellular carcinoma (HCC) animal models. HCC is the second leading cause of cancer death worldwide, with an annual death toll exceeding 745,000. Stunningly, only 15% of HCC patients are candidates for curative therapy, leading 85% of patients to seek palliative therapeutic options. The VX2 rabbit model is considered the most relevant and widely used HCC model; however, more reliable HCC models are critically needed. In general, animal models for biomedical research should (1) mimic the human disease on a molecular basis, (2) derive from a relevant cell line that lends itself to in vitro study, (3) be reliable and predictable, (4) manifest survival differences, (5) allow for accurate treatment assessment, (6) be readily imaged, and (7) occur in similar background settings as the human disease. Over the past decades, numerous small animal models have been utilized for HCC studies; however, the development of new large animal models as qualified alternatives to murine models represents a key technology to advance research into human clinical trials.

* These authors contributed equally.


 
  • References

  • 1 Wu SD, Ma YS, Fang Y, Liu LL, Fu D, Shen XZ. Role of the microenvironment in hepatocellular carcinoma development and progression. Cancer Treat Rev 2012; 38 (03) 218-225
  • 2 Li Y, Tang ZY, Hou JX. Hepatocellular carcinoma: insight from animal models. Nat Rev Gastroenterol Hepatol 2011; 9 (01) 32-43
  • 3 Kumar M, Zhao X, Wang XW. Molecular carcinogenesis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: one step closer to personalized medicine?. Cell Biosci 2011; 1 (01) 5
  • 4 Liver and Intrahepatic Bile Duct Cancer National Cancer Institute Surveillance, Epidemiology, and End Results Program (NCI SEER) Stat Fact Sheets. 2015
  • 5 Llovet JM, Ricci S, Mazzaferro V. , et al; SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359 (04) 378-390
  • 6 Tortora GJ, Derrickson B. Principles of Anatomy & Physiology. 12th ed. Hoboken: Wiley; 2007: 559-655
  • 7 Standring S. Gray's Anatomy. 40th ed. London: Churchill Livingstone Elsevier; 2009: 196-200
  • 8 Mitra V, Metcalf J. Functional anatomy and blood supply of the liver. Anaesth Intensive Care Med 2012; 13 (02) 52-53
  • 9 Tan Q, Hu J, Yu X. , et al. The role of IL-1 family members and Kupffer cells in liver regeneration. BioMed Res Int 2016; 2016: 6495793
  • 10 Huang R, Pan Q, Ma X. , et al. Hepatic stellate cell-derived microvesicles prevent hepatocytes from injury induced by APAP/H2O2. Stem Cells Int 2016; 2016: 8357567
  • 11 DeFrances MC, Michalopoulus GK. Liver regeneration and partial hepatectomy: processes and prototype. In: Haussinger D. , eds. Liver Regeneration. Berlin/Boston: Walter de Gruyter GmbH & Co. KG; 2011: 1-16
  • 12 Elsharkawy AM, Oakley F, Mann DA. The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis 2005; 10 (05) 927-939
  • 13 Schuppan D, Afdhal NH. Liver cirrhosis. Lancet 2008; 371 (9615): 838-851
  • 14 Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61 (02) 69-90
  • 15 Cancers H. National Comprehensive Cancer Network (NCCN). Clin Pract Guidel Oncol 2013; I: 1-94
  • 16 Cancer Facts & Figures 2016. American Cancer Society. 2016:1–9
  • 17 Perz JF, Armstrong GL, Farrington LA, Hutin YJF, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 2006; 45 (04) 529-538
  • 18 Mikuriya Y, Tashiro H, Kuroda S. , et al. Fatty liver creates a pro-metastatic microenvironment for hepatocellular carcinoma through activation of hepatic stellate cells. Int J Cancer 2015; 136 (04) E3-E13
  • 19 Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64 (01) 73-84
  • 20 Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 2015; 149 (05) 1226-1239.e4
  • 21 Carr BI, Kondragunta V, Buch SC, Branch RA. Therapeutic equivalence in survival for hepatic arterial chemoembolization and yttrium 90 microsphere treatments in unresectable hepatocellular carcinoma: a two-cohort study. Cancer 2010; 116 (05) 1305-1314
  • 22 Nault J-C, Zucman-Rossi J. Genetics of hepatocellular carcinoma: the next generation. J Hepatol 2014; 60 (01) 224-226
  • 23 Kan Z, Zheng H, Liu X. , et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res 2013; 23 (09) 1422-1433
  • 24 Iakova P, Timchenko L, Timchenko NA. Intracellular signaling and hepatocellular carcinoma. Semin Cancer Biol 2011; 21 (01) 28-34
  • 25 Li S, Mao M. Next generation sequencing reveals genetic landscape of hepatocellular carcinomas. Cancer Lett 2013; 340 (02) 247-253
  • 26 O'Neil G. The guardian of the genome. Aust Life Sci 2007; 4 (01) 42
  • 27 Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 2013; 13 (01) 11-26
  • 28 Canzonieri V, Alessandrini L, Caggiari L. , et al. Hepatocellular carcinoma: an overview of clinico-pathological and molecular perspectives. World Cancer Res J 2015; 2 (01) e485
  • 29 Pierce B. Genetics: A Conceptual Approach. In: Genetics: A Conceptual Approach. 2nd ed. New York: W.H. Freeman; 2004: 833
  • 30 Sporn MB, Liby KT. NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer 2012; 12 (08) 564-571
  • 31 Guichard C, Amaddeo G, Imbeaud S. , et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 2012; 44 (06) 694-698
  • 32 DeNicola GM, Karreth FA, Humpton TJ. , et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011; 475 (7354): 106-109
  • 33 Schulze K, Imbeaud S, Letouzé E. , et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 2015; 47 (05) 505-511
  • 34 Cleary SP, Jeck WR, Zhao X. , et al. Identification of driver genes in hepatocellular carcinoma by exome sequencing. Hepatology 2013; 58 (05) 1693-1702
  • 35 Sung WK, Zheng H, Li S. , et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet 2012; 44 (07) 765-769
  • 36 Barski A, Cuddapah S, Cui K. , et al. High-resolution profiling of histone methylations in the human genome. Cell 2007; 129 (04) 823-837
  • 37 El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132 (07) 2557-2576
  • 38 Ishizaki M, Ashida K, Higashi T. , et al. The formation of capsule and septum in human hepatocellular carcinoma. Virchows Arch 2001; 438 (06) 574-580
  • 39 Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 2013; 144 (03) 512-527
  • 40 Lauer GM, Walker BD. Hepatitis C Virus Infection. N Engl J Med 2001; 345: 41-52
  • 41 Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol Rev 2000; 64 (01) 51-68
  • 42 Rosen HR. Clinical practice. Chronic hepatitis C infection. N Engl J Med 2011; 364 (25) 2429-2438
  • 43 Mota A, Areias J, Cardoso MF. Chronic liver disease and cirrhosis among patients with hepatitis B virus infection in northern Portugal with reference to the viral genotypes. J Med Virol 2011; 83 (01) 71-77
  • 44 Naggie S, Cooper C, Saag M. , et al; ION-4 Investigators. Ledipasvir and sofosbuvir for HCV in patients coinfected with HIV-1. N Engl J Med 2015; 373 (08) 705-713
  • 45 Pereira K, Salsamendi J, Casillas J. The global nonalcoholic fatty liver disease epidemic: what a radiologist needs to know. J Clin Imaging Sci 2015; 5: 32
  • 46 Angulo P. Nonalcoholic fatty liver disease. N Engl J Med 2002; 346 (16) 1221-1231
  • 47 Xu B, Broome U, Uzunel M. , et al. Capillarization of hepatic sinusoid by liver endothelial cell-reactive autoantibodies in patients with cirrhosis and chronic hepatitis. Am J Pathol 2003; 163 (04) 1275-1289
  • 48 Waghray A, Murali AR, Menon KN. Hepatocellular carcinoma: from diagnosis to treatment. World J Hepatol 2015; 7 (08) 1020-1029
  • 49 Pons F, Varela M, Llovet JM. Staging systems in hepatocellular carcinoma. HPB (Oxford) 2005; 7 (01) 35-41
  • 50 Adnane L, Trail PA, Taylor I, Wilhelm SM. Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol 2006; 407: 597-612
  • 51 Aravalli RN, Golzarian J, Cressman EN. Animal models of cancer in interventional radiology. Eur Radiol 2009; 19 (05) 1049-1053
  • 52 Cressman EN. Animal models in hepatocellular carcinoma: another step in the right direction. J Vasc Interv Radiol 2012; 23 (03) 395-396
  • 53 Wall RJ, Shani M. Are animal models as good as we think?. Theriogenology 2008; 69 (01) 2-9
  • 54 Parvinian A, Casadaban LC, Gaba RC. Development, growth, propagation, and angiographic utilization of the rabbit VX2 model of liver cancer: a pictorial primer and “how to” guide. Diagn Interv Radiol 2014; 20 (04) 335-340
  • 55 Murphy TP. Introduction to clinical interventional radiology. Semin Intervent Radiol 2005; 22 (01) 3-5
  • 56 Schook LB, Collares TV, Hu W. , et al. A genetic porcine model of cancer. PLoS One 2015; 10 (07) e0128864
  • 57 Zuber R, Anzenbacherová E, Anzenbacher P. Cytochromes P450 and experimental models of drug metabolism. J Cell Mol Med 2002; 6 (02) 189-198
  • 58 Pollock CB, Rogatcheva MB, Schook LB. Comparative genomics of xenobiotic metabolism: a porcine-human PXR gene comparison. Mamm Genome 2007; 18 (03) 210-219
  • 59 Gray MA, Pollock CB, Schook LB, Squires EJ. Characterization of porcine pregnane X receptor, farnesoid X receptor and their splice variants. Exp Biol Med (Maywood) 2010; 235 (06) 718-736
  • 60 Li X, Zhou X, Guan Y, Wang Y-XJ, Scutt D, Gong Q-Y. N-nitrosodiethylamine-induced pig liver hepatocellular carcinoma model: radiological and histopathological studies. Cardiovasc Intervent Radiol 2006; 29 (03) 420-428
  • 61 Mitchell J, Tinkey PT, Avritscher R. , et al. Validation of a preclinical model of diethylnitrosamine-induced hepatic neoplasia in Yucatan miniature pigs. Oncology 2016; 91 (02) 90-100
  • 62 Schachtschneider KM, Gaba R, Schwind R. , et al. Validation of the oncopig platform as a translational porcine model for human hepatocellular carcinoma. J Vasc Interv Radiol 2017; 28 (02) S60