Semin Thromb Hemost 2018; 44(01): 060-069
DOI: 10.1055/s-0037-1603937
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Inhibition of Factors XI and XII for Prevention of Thrombosis Induced by Artificial Surfaces

Benjamin Tillman
1   Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
,
David Gailani
1   Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
2   Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
› Author Affiliations
Further Information

Publication History

Publication Date:
12 September 2017 (online)

Abstract

Exposure of blood to a variety of artificial surface induces contact activation, a process that contributes to the host innate response to foreign substances. On the foreign surface, the contact factors, factor XII (FXII), and plasma prekallikrein undergo reciprocal conversion to their fully active protease forms (FXIIa and α-kallikrein, respectively) by a process supported by the cofactor high-molecular-weight kininogen. Contact activation can trigger blood coagulation by conversion of factor XI (FXI) to the protease FXIa. There is interest in developing therapeutic inhibitors to FXIa and FXIIa because these activated factors can contribute to thrombosis in certain situations. Drugs targeting these proteases may be particularly effective in thrombosis triggered by exposure of blood to the surfaces of implantable medical devices. Here, we review clinical data supporting roles for FXII and FXI in thrombosis induced by medical devices, and preclinical data suggesting that therapeutic targeting of these proteins may limit surface-induced thrombosis.

 
  • References

  • 1 Nielsen VG, Kirklin JK, Holman WL. , et al. Mechanical circulatory device thrombosis: a new paradigm linking hypercoagulation and hypofibrinolysis. ASAIO J 2008; 54 (04) 351-358
  • 2 Ekdahl KN, Lambris JD, Elwing H. , et al. Innate immunity activation on biomaterial surfaces: a mechanistic model and coping strategies. Adv Drug Deliv Rev 2011; 63 (12) 1042-1050
  • 3 Jaffer IH, Fredenburgh JC, Hirsh J, Weitz JI. Medical device-induced thrombosis: what causes it and how can we prevent it?. J Thromb Haemost 2015; 13 (Suppl. 01) S72-S81
  • 4 Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng 2005; 11 (1-2): 1-18
  • 5 Turbill P, Beugeling T, Poot AA. Proteins involved in the Vroman effect during exposure of human blood plasma to glass and polyethylene. Biomaterials 1996; 17 (13) 1279-1287
  • 6 Leonard EF, Vroman L. Is the Vroman effect of importance in the interaction of blood with artificial materials?. J Biomater Sci Polym Ed 1991; 3 (01) 95-107
  • 7 Scott CF. Mechanism of the participation of the contact system in the Vroman effect. Review and summary. J Biomater Sci Polym Ed 1991; 2 (03) 173-181
  • 8 Hirsh SL, McKenzie DR, Nosworthy NJ, Denman JA, Sezerman OU, Bilek MM. The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surf B Biointerfaces 2013; 103: 395-404
  • 9 Vogler EA, Siedlecki CA. Contact activation of blood-plasma coagulation. Biomaterials 2009; 30 (10) 1857-1869
  • 10 Gailani D, Gruber A. Factor XI as a therapeutic target. Arterioscler Thromb Vasc Biol 2016; 36 (07) 1316-1322
  • 11 Schmaier AH. The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities. J Thromb Haemost 2016; 14 (01) 28-39
  • 12 Jukema BN, de Maat S, Maas C. Processing of factor XII during Inflammatory Reactions. Front Med (Lausanne) 2016; 3: 52
  • 13 Ghebrehiwet B, Kaplan AP, Joseph K, Peerschke EI. The complement and contact activation systems: partnership in pathogenesis beyond angioedema. Immunol Rev 2016; 274 (01) 281-289
  • 14 Lin L, Wu M, Zhao J. The initiation and effects of plasma contact activation: an overview. Int J Hematol 2017; 105 (03) 235-243
  • 15 Nickel KF, Long AT, Fuchs TA, Butler LM, Renné T. Factor XII as a therapeutic target in thromboembolic and inflammatory diseases. Arterioscler Thromb Vasc Biol 2017; 37 (01) 13-20
  • 16 Schmaier AH. Antithrombotic potential of the contact activation pathway. Curr Opin Hematol 2016; 23 (05) 445-452
  • 17 Weitz JI, Fredenburgh JC. Factors XI and XII as targets for new anticoagulants. Front Med (Lausanne) 2017; 4: 19
  • 18 Gailani D, Neff AT. Rare coagulation factor deficiencies. In: Hematology: Basic Principles and Practice, 6th ed. Philadelphia, PA: Elsevier Saunders; 2013: 1971-1986
  • 19 Ratnoff OD, Colopy JE. A familial hemorrhagic trait associated with a deficiency of a clot-promoting fraction of plasma. J Clin Invest 1955; 34 (04) 602-613
  • 20 Rosenthal RL, Dreskin OH, Rosenthal N. New hemophilia-like disease caused by deficiency of a third plasma thromboplastin factor. Proc Soc Exp Biol Med 1953; 82 (01) 171-174
  • 21 MacFarlane RG. An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature 1964; 202: 498-499
  • 22 Davie EW, Ratnoff OD. Waterfall sequence for intrinsic blood clotting. Science 1964; 145 (3638): 1310-1312
  • 23 Hathaway WE, Belhasen LP, Hathaway HS. Evidence for a new plasma thromboplastin factor. I. Case report, coagulation studies and physicochemical properties. Blood 1965; 26 (05) 521-532
  • 24 Colman RW, Bagdasarian A, Talamo RC. , et al. Williams trait. Human kininogen deficiency with diminished levels of plasminogen proactivator and prekallikrein associated with abnormalities of the Hageman factor-dependent pathways. J Clin Invest 1975; 56 (06) 1650-1662
  • 25 Ivanov I, Matafonov A, Sun M-F. , et al. Proteolytic properties of single-chain factor XII: a mechanism for triggering contact activation. Blood 2017; 129 (11) 1527-1537
  • 26 Müller F, Mutch NJ, Schenk WA. , et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 2009; 139 (06) 1143-1156
  • 27 Morrissey JH, Smith SA. Polyphosphate as modulator of hemostasis, thrombosis, and inflammation. J Thromb Haemost 2015; 13 (Suppl. 01) S92-S97
  • 28 Kannemeier C, Shibamiya A, Nakazawa F. , et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A 2007; 104 (15) 6388-6393
  • 29 Fuchs TA, Brill A, Duerschmied D. , et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010; 107 (36) 15880-15885
  • 30 Gould TJ, Vu TT, Swystun LL. , et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol 2014; 34 (09) 1977-1984
  • 31 Ivanov I, Shakhawat R, Sun M-F. , et al. Nucleic acids as cofactors for factor XI and prekallikrein activation: different roles for high-molecular-weight kininogen. Thromb Haemost 2017; 117 (04) 671-681
  • 32 van der Meijden PE, Munnix IC, Auger JM. , et al. Dual role of collagen in factor XII-dependent thrombus formation. Blood 2009; 114 (04) 881-890
  • 33 Maas C, Govers-Riemslag JW, Bouma B. , et al. Misfolded proteins activate factor XII in humans, leading to kallikrein formation without initiating coagulation. J Clin Invest 2008; 118 (09) 3208-3218
  • 34 Frick I-M, Akesson P, Herwald H. , et al. The contact system--a novel branch of innate immunity generating antibacterial peptides. EMBO J 2006; 25 (23) 5569-5578
  • 35 Frick I-M, Björck L, Herwald H. The dual role of the contact system in bacterial infectious disease. Thromb Haemost 2007; 98 (03) 497-502
  • 36 Oehmcke S, Herwald H. Contact system activation in severe infectious diseases. J Mol Med (Berl) 2010; 88 (02) 121-126
  • 37 Foley JH, Conway EM. Cross talk pathways between coagulation and inflammation. Circ Res 2016; 118 (09) 1392-1408
  • 38 Doolittle RF. Step-by-step evolution of vertebrate blood coagulation. Cold Spring Harb Symp Quant Biol 2009; 74: 35-40
  • 39 Ponczek MB, Gailani D, Doolittle RF. Evolution of the contact phase of vertebrate blood coagulation. J Thromb Haemost 2008; 6 (11) 1876-1883
  • 40 Gailani D, Geng Y, Verhamme I. , et al. The mechanism underlying activation of factor IX by factor XIa. Thromb Res 2014; 133 (Suppl. 01) S48-S51
  • 41 Wheeler AP, Gailani D. Why factor XI deficiency is a clinical concern. Expert Rev Hematol 2016; 9 (07) 629-637
  • 42 Naito K, Fujikawa K. Activation of human blood coagulation factor XI independent of factor XII. Factor XI is activated by thrombin and factor XIa in the presence of negatively charged surfaces. J Biol Chem 1991; 266 (12) 7353-7358
  • 43 Gailani D, Broze Jr GJ. Factor XI activation in a revised model of blood coagulation. Science 1991; 253 (5022): 909-912
  • 44 Matafonov A, Sarilla S, Sun MF. , et al. Activation of factor XI by products of prothrombin activation. Blood 2011; 118 (02) 437-445
  • 45 van Montfoort ML, Meijers JC. Recent insights into the role of the contact pathway in thrombo-inflammatory disorders. Hematology (Am Soc Hematol Educ Program) 2014; 2014 (01) 60-65
  • 46 Wang X, Cheng Q, Xu L. , et al. Effects of factor IX or factor XI deficiency on ferric chloride-induced carotid artery occlusion in mice. J Thromb Haemost 2005; 3 (04) 695-702
  • 47 Renné T, Pozgajová M, Grüner S. , et al. Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med 2005; 202 (02) 271-281
  • 48 Cheng Q, Tucker EI, Pine MS. , et al. A role for factor XIIa-mediated factor XI activation in thrombus formation in vivo. Blood 2010; 116 (19) 3981-3989
  • 49 Revenko AS, Gao D, Crosby JR. , et al. Selective depletion of plasma prekallikrein or coagulation factor XII inhibits thrombosis in mice without increased risk of bleeding. Blood 2011; 118 (19) 5302-5311
  • 50 Bird JE, Smith PL, Wang X. , et al. Effects of plasma kallikrein deficiency on haemostasis and thrombosis in mice: murine ortholog of the Fletcher trait. Thromb Haemost 2012; 107 (06) 1141-1150
  • 51 Stavrou EX, Fang C, Merkulova A. , et al. Reduced thrombosis in Klkb1-/- mice is mediated by increased Mas receptor, prostacyclin, Sirt1, and KLF4 and decreased tissue factor. Blood 2015; 125 (04) 710-719
  • 52 Kokoye Y, Ivanov I, Cheng Q. , et al. A comparison of the effects of factor XII deficiency and prekallikrein deficiency on thrombus formation. Thromb Res 2016; 140: 118-124
  • 53 Merkulov S, Zhang W-M, Komar AA. , et al. Deletion of murine kininogen gene 1 (mKng1) causes loss of plasma kininogen and delays thrombosis. Blood 2008; 111 (03) 1274-1281
  • 54 Tucker EI, Marzec UM, White TC. , et al. Prevention of vascular graft occlusion and thrombus-associated thrombin generation by inhibition of factor XI. Blood 2009; 113 (04) 936-944
  • 55 Gruber A, Hanson SR. Factor XI-dependence of surface- and tissue factor-initiated thrombus propagation in primates. Blood 2003; 102 (03) 953-955
  • 56 Matafonov A, Leung PY, Gailani AE. , et al. Factor XII inhibition reduces thrombus formation in a primate thrombosis model. Blood 2014; 123 (11) 1739-1746
  • 57 Salomon O, Steinberg DM, Zucker M, Varon D, Zivelin A, Seligsohn U. Patients with severe factor XI deficiency have a reduced incidence of deep-vein thrombosis. Thromb Haemost 2011; 105 (02) 269-273
  • 58 Preis M, Hirsch J, Kotler A. , et al. Factor XI deficiency is associated with lower risk for cardiovascular and venous thromboembolism events. Blood 2017; 129 (09) 1210-1215
  • 59 Meijers JC, Tekelenburg WL, Bouma BN, Bertina RM, Rosendaal FR. High levels of coagulation factor XI as a risk factor for venous thrombosis. N Engl J Med 2000; 342 (10) 696-701
  • 60 Cushman M, O'Meara ES, Folsom AR, Heckbert SR. Coagulation factors IX through XIII and the risk of future venous thrombosis: the Longitudinal Investigation of Thromboembolism Etiology. Blood 2009; 114 (14) 2878-2883
  • 61 Büller HR, Bethune C, Bhanot S. , et al; FXI-ASO TKA Investigators. Factor XI antisense oligonucleotide for prevention of venous thrombosis. N Engl J Med 2015; 372 (03) 232-240
  • 62 Salomon O, Steinberg DM, Koren-Morag N, Tanne D, Seligsohn U. Reduced incidence of ischemic stroke in patients with severe factor XI deficiency. Blood 2008; 111 (08) 4113-4117
  • 63 Yang DT, Flanders MM, Kim H, Rodgers GM. Elevated factor XI activity levels are associated with an increased odds ratio for cerebrovascular events. Am J Clin Pathol 2006; 126 (03) 411-415
  • 64 Suri MF, Yamagishi K, Aleksic N, Hannan PJ, Folsom AR. Novel hemostatic factor levels and risk of ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) Study. Cerebrovasc Dis 2010; 29 (05) 497-502
  • 65 Siegerink B, Govers-Riemslag JW, Rosendaal FR, Ten Cate H, Algra A. Intrinsic coagulation activation and the risk of arterial thrombosis in young women: results from the Risk of Arterial Thrombosis in relation to Oral contraceptives (RATIO) case-control study. Circulation 2010; 122 (18) 1854-1861
  • 66 Salomon O, Steinberg DM, Dardik R. , et al. Inherited factor XI deficiency confers no protection against acute myocardial infarction. J Thromb Haemost 2003; 1 (04) 658-661
  • 67 Doggen CJ, Rosendaal FR, Meijers JC. Levels of intrinsic coagulation factors and the risk of myocardial infarction among men: opposite and synergistic effects of factors XI and XII. Blood 2006; 108 (13) 4045-4051
  • 68 Butenas S, Undas A, Gissel MT, Szuldrzynski K, Zmudka K, Mann KG. Factor XIa and tissue factor activity in patients with coronary artery disease. Thromb Haemost 2008; 99 (01) 142-149
  • 69 Berliner JI, Rybicki AC, Kaplan RC, Monrad ES, Freeman R, Billett HH. Elevated levels of factor XI are associated with cardiovascular disease in women. Thromb Res 2002; 107 (1-2): 55-60
  • 70 Zeerleder S, Schloesser M, Redondo M. , et al. Reevaluation of the incidence of thromboembolic complications in congenital factor XII deficiency--a study on 73 subjects from 14 Swiss families. Thromb Haemost 1999; 82 (04) 1240-1246
  • 71 Koster T, Rosendaal FR, Briët E, Vandenbroucke JP. John Hageman's factor and deep-vein thrombosis: Leiden thrombophilia Study. Br J Haematol 1994; 87 (02) 422-424
  • 72 Govers-Riemslag JW, Smid M, Cooper JA. , et al. The plasma kallikrein-kinin system and risk of cardiovascular disease in men. J Thromb Haemost 2007; 5 (09) 1896-1903
  • 73 Endler G, Marsik C, Jilma B, Schickbauer T, Quehenberger P, Mannhalter C. Evidence of a U-shaped association between factor XII activity and overall survival. J Thromb Haemost 2007; 5 (06) 1143-1148
  • 74 Tatsumi K, Mackman N. Tissue factor and atherothrombosis. J Atheroscler Thromb 2015; 22 (06) 543-549
  • 75 Manly DA, Boles J, Mackman N. Role of tissue factor in venous thrombosis. Annu Rev Physiol 2011; 73: 515-525
  • 76 Zuraw BL, Christiansen SC. HAE pathophysiology and underlying mechanisms. Clin Rev Allergy Immunol 2016; 51 (02) 216-229
  • 77 Naudin C, Burillo E, Blankenberg S, Butler L, Renné T. Factor XII contact activation. Semin Thromb Hemost 2017
  • 78 Reshef A, Zanichelli A, Longhurst H, Relan A, Hack CE. Elevated D-dimers in attacks of hereditary angioedema are not associated with increased thrombotic risk. Allergy 2015; 70 (05) 506-513
  • 79 Yau JW, Stafford AR, Liao P, Fredenburgh JC, Roberts R, Weitz JI. Mechanism of catheter thrombosis: comparison of the antithrombotic activities of fondaparinux, enoxaparin, and heparin in vitro and in vivo. Blood 2011; 118 (25) 6667-6674
  • 80 Yau JW, Stafford AR, Liao P. , et al. Corn trypsin inhibitor coating attenuates the prothrombotic properties of catheters in vitro and in vivo. Acta Biomater 2012; 8 (11) 4092-4100
  • 81 Ekdahl KN, Soveri I, Hilborn J, Fellström B, Nilsson B. Cardiovascular disease in haemodialysis: role of the intravascular innate immune system. Nat Rev Nephrol 2017; 13 (05) 285-296
  • 82 Frank RD, Weber J, Dresbach H, Thelen H, Weiss C, Floege J. Role of contact system activation in hemodialyzer-induced thrombogenicity. Kidney Int 2001; 60 (05) 1972-1981
  • 83 Bernacca GM, Gulbransen MJ, Wilkinson R, Wheatley DJ. In vitro blood compatibility of surface-modified polyurethanes. Biomaterials 1998; 19 (13) 1151-1165
  • 84 Matata BM, Wark S, Sundaram S. , et al. In vitro contact phase activation with haemodialysis membranes: role of pharmaceutical agents. Biomaterials 1995; 16 (17) 1305-1312
  • 85 Matata BM, Courtney JM, Sundaram S. , et al. Determination of contact phase activation by the measurement of the activity of supernatant and membrane surface-adsorbed factor XII (FXII): its relevance as a useful parameter for the in vitro assessment of haemodialysis membranes. J Biomed Mater Res 1996; 31 (01) 63-70
  • 86 Kravtsov DV, Matafonov A, Tucker EI. , et al. Factor XI contributes to thrombin generation in the absence of factor XII. Blood 2009; 114 (02) 452-458
  • 87 Sniecinski RM, Chandler WL. Activation of the hemostatic system during cardiopulmonary bypass. Anesth Analg 2011; 113 (06) 1319-1333
  • 88 Sonntag J, Dähnert I, Stiller B, Hetzer R, Lange PE. Complement and contact activation during cardiovascular operations in infants. Ann Thorac Surg 1998; 65 (02) 525-531
  • 89 Wendel HP, Jones DW, Gallimore MJ. FXII levels, FXIIa-like activities and kallikrein activities in normal subjects and patients undergoing cardiac surgery. Immunopharmacology 1999; 45 (1-3): 141-144
  • 90 Wachtfogel YT, Harpel PC, Edmunds Jr LH, Colman RW. Formation of C1s-C1-inhibitor, kallikrein-C1-inhibitor, and plasmin-alpha 2-plasmin-inhibitor complexes during cardiopulmonary bypass. Blood 1989; 73 (02) 468-471
  • 91 Gallimore MJ, Jones DW, Winter M, Wendel HP. Changes in high molecular weight kininogen levels during and after cardiopulmonary bypass surgery measured using a chromogenic peptide substrate assay. Blood Coagul Fibrinolysis 2002; 13 (06) 561-568
  • 92 Boisclair MD, Lane DA, Philippou H. , et al. Mechanisms of thrombin generation during surgery and cardiopulmonary bypass. Blood 1993; 82 (11) 3350-3357
  • 93 Koster A, Fischer T, Gruendel M. , et al. Management of heparin resistance during cardiopulmonary bypass: the effect of five different anticoagulation strategies on hemostatic activation. J Cardiothorac Vasc Anesth 2003; 17 (02) 171-175
  • 94 Burman JF, Chung HI, Lane DA, Philippou H, Adami A, Lincoln JC. Role of factor XII in thrombin generation and fibrinolysis during cardiopulmonary bypass. Lancet 1994; 344 (8931): 1192-1193
  • 95 Wendel HP, Scheule AM, Eckstein FS, Ziemer G. Haemocompatibility of paediatric membrane oxygenators with heparin-coated surfaces. Perfusion 1999; 14 (01) 21-28
  • 96 Taenaka Y, Matsuda T, Takano H, Umezu M, Akutsu T. Influences of ventricular assist device pumping on blood coagulation. ASAIO Trans 1989; 35 (03) 396-398
  • 97 Takahama T, Kanai F, Hiraishi M. , et al. Significance of various anticoagulation therapies during use of a left ventricular assist device. ASAIO Trans 1989; 35 (03) 426-429
  • 98 Tanaka K, Wada K, Morimoto T. , et al. Hemostatic alterations caused by ventricular assist devices for postcardiotomy heart failure. Artif Organs 1991; 15 (01) 59-65
  • 99 Tanaka K, Sato T, Kondo C. , et al. Hematological problems during the use of cardiac assist devices: clinical experiences in Japan. Artif Organs 1992; 16 (02) 182-188
  • 100 Himmelreich G, Ullmann H, Riess H. , et al. Pathophysiologic role of contact activation in bleeding followed by thromboembolic complications after implantation of a ventricular assist device. ASAIO J 1995; 41 (03) M790-M794
  • 101 Koster A, Loebe M, Hansen R. , et al. Alterations in coagulation after implantation of a pulsatile Novacor LVAD and the axial flow MicroMed DeBakey LVAD. Ann Thorac Surg 2000; 70 (02) 533-537
  • 102 Guo Z, Bussard KM, Chatterjee K, Miller R, Vogler EA, Siedlecki CA. Mathematical modeling of material-induced blood plasma coagulation. Biomaterials 2006; 27 (05) 796-806
  • 103 Chatterjee K, Vogler EA, Siedlecki CA. Procoagulant activity of surface-immobilized Hageman factor. Biomaterials 2006; 27 (33) 5643-5650
  • 104 Larsson M, Rayzman V, Nolte MW. , et al. A factor XIIa inhibitory antibody provides thromboprotection in extracorporeal circulation without increasing bleeding risk. Sci Transl Med 2014; 6 (222) 222ra17
  • 105 Worm M, Köhler EC, Panda R. , et al. The factor XIIa blocking antibody 3F7: a safe anticoagulant with anti-inflammatory activities. Ann Transl Med 2015; 3 (17) 247
  • 106 Yau JW, Liao P, Fredenburgh JC. , et al. Selective depletion of factor XI or factor XII with antisense oligonucleotides attenuates catheter thrombosis in rabbits. Blood 2014; 123 (13) 2102-2107
  • 107 David T, Kim YC, Ely LK. , et al. Factor XIa-specific IgG and a reversal agent to probe factor XI function in thrombosis and hemostasis. Sci Transl Med 2016; 8 (353) 353ra112
  • 108 Gailani D, Bane CE, Gruber A. Factor XI and contact activation as targets for antithrombotic therapy. J Thromb Haemost 2015; 13 (08) 1383-1395
  • 109 Eckman PM, John R. Bleeding and thrombosis in patients with continuous-flow ventricular assist devices. Circulation 2012; 125 (24) 3038-3047
  • 110 Meyer AL, Malehsa D, Budde U, Bara C, Haverich A, Strueber M. Acquired von Willebrand syndrome in patients with a centrifugal or axial continuous flow left ventricular assist device. JACC Heart Fail 2014; 2 (02) 141-145
  • 111 Tucker EI, Verbout NG, Leung PY. , et al. Inhibition of factor XI activation attenuates inflammation and coagulopathy while improving the survival of mouse polymicrobial sepsis. Blood 2012; 119 (20) 4762-4768
  • 112 Bane Jr CE, Ivanov I, Matafonov A. , et al. Factor XI deficiency alters the cytokine response and activation of contact proteases during polymicrobial sepsis in mice. PLoS One 2016; 11 (04) e0152968
  • 113 Shnerb Ganor R, Harats D, Schiby G. , et al. Factor XI deficiency protects against atherogenesis in apolipoprotein E/factor XI double knockout mice. Arterioscler Thromb Vasc Biol 2016; 36 (03) 475-481