Semin Thromb Hemost 2018; 44(02): 176-184
DOI: 10.1055/s-0037-1604092
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Vitamin K–Dependent Protein S: Beyond the Protein C Pathway

Björn Dahlbäck
1   Department of Translational Medicine, Lund University, Malmö, Sweden
› Author Affiliations
Further Information

Publication History

Publication Date:
13 September 2017 (online)

Abstract

Protein S is a vitamin K–dependent plasma glycoprotein circulating in plasma at a concentration of around 350 nM. Approximately 60% of protein S in human plasma is bound to the complement regulatory protein C4b-binding protein (C4BP) in a high-affinity, high-molecular-weight complex. Protein S in plasma has multiple anticoagulant properties and heterozygous protein S deficiency is associated with increased risk of venous thrombosis. Homozygous deficiency in man and mice is associated with severe thrombosis in fetal life, defects in the vascular system development, and not compatible with life. Protein S has additional functions beyond being an anticoagulant. It affects the complement regulatory properties of C4BP, and moreover, protein S interacts with tyrosine kinase receptors of the TAM family, which comprises Tyro3, Axl, and Mer. The TAM receptor interaction is important for the ability of protein S to stimulate phagocytosis of apoptotic cells. This review will discuss the multiple functions of protein S, describing its role as cofactor to activated protein C with a subsequent focus on the other functions of protein S.

 
  • References

  • 1 van der Meer JH, van der Poll T, van 't Veer C. TAM receptors, Gas6, and protein S: roles in inflammation and hemostasis. Blood 2014; 123 (16) 2460-2469
  • 2 Suleiman L, Négrier C, Boukerche H. Protein S: a multifunctional anticoagulant vitamin K-dependent protein at the crossroads of coagulation, inflammation, angiogenesis, and cancer. Crit Rev Oncol Hematol 2013; 88 (03) 637-654
  • 3 Hepner M, Karlaftis V. Protein S. Methods Mol Biol 2013; 992: 373-381
  • 4 García de Frutos P, Fuentes-Prior P, Hurtado B, Sala N. Molecular basis of protein S deficiency. Thromb Haemost 2007; 98 (03) 543-556
  • 5 DiScipio RG, Davie EW. Characterization of protein S, a gamma-carboxyglutamic acid containing protein from bovine and human plasma. Biochemistry 1979; 18 (05) 899-904
  • 6 Dahlbäck B, Stenflo J. High molecular weight complex in human plasma between vitamin K-dependent protein S and complement component C4b-binding protein. Proc Natl Acad Sci U S A 1981; 78 (04) 2512-2516
  • 7 Dahlbäck B. The tale of protein S and C4b-binding protein, a story of affection. Thromb Haemost 2007; 98 (01) 90-96
  • 8 Dahlbäck B. C4b-binding protein: a forgotten factor in thrombosis and hemostasis. Semin Thromb Hemost 2011; 37 (04) 355-361
  • 9 Griffin JH, Gruber A, Fernández JA. Reevaluation of total, free, and bound protein S and C4b-binding protein levels in plasma anticoagulated with citrate or hirudin. Blood 1992; 79 (12) 3203-3211
  • 10 Villoutreix BO, García de Frutos P, Lövenklev M, Linse S, Fernlund P, Dahlbäck B. SHBG region of the anticoagulant cofactor protein S: secondary structure prediction, circular dichroism spectroscopy, and analysis of naturally occurring mutations. Proteins 1997; 29 (04) 478-491
  • 11 Villoutreix BO, Teleman O, Dahlbäck B. A theoretical model for the Gla-TSR-EGF-1 region of the anticoagulant cofactor protein S: from biostructural pathology to species-specific cofactor activity. J Comput Aided Mol Des 1997; 11 (03) 293-304
  • 12 Giri TK, Villoutreix BO, Wallqvist A, Dahlbäck B, de Frutos PG. Topological studies of the amino terminal modules of vitamin K-dependent protein S using monoclonal antibody epitope mapping and molecular modeling. Thromb Haemost 1998; 80 (05) 798-804
  • 13 Villoutreix BO, Dahlbäck B, Borgel D, Gandrille S, Muller YA. Three-dimensional model of the SHBG-like region of anticoagulant protein S: new structure-function insights. Proteins 2001; 43 (02) 203-216
  • 14 Perera L, Li L, Darden T, Monroe DM, Pedersen LG. Prediction of solution structures of the Ca2+-bound gamma-carboxyglutamic acid domains of protein S and homolog growth arrest specific protein 6: use of the particle mesh Ewald method. Biophys J 1997; 73 (04) 1847-1856
  • 15 Burstyn-Cohen T, Heeb MJ, Lemke G. Lack of protein S in mice causes embryonic lethal coagulopathy and vascular dysgenesis. J Clin Invest 2009; 119 (10) 2942-2953
  • 16 Saller F, Brisset AC, Tchaikovski SN. , et al. Generation and phenotypic analysis of protein S-deficient mice. Blood 2009; 114 (11) 2307-2314
  • 17 Manfioletti G, Brancolini C, Avanzi G, Schneider C. The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade. Mol Cell Biol 1993; 13 (08) 4976-4985
  • 18 Balogh I, Hafizi S, Stenhoff J, Hansson K, Dahlbäck B. Analysis of Gas6 in human platelets and plasma. Arterioscler Thromb Vasc Biol 2005; 25 (06) 1280-1286
  • 19 Dahlbäck B, Hildebrand B, Linse S. Novel type of very high affinity calcium-binding sites in beta-hydroxyasparagine-containing epidermal growth factor-like domains in vitamin K-dependent protein S. J Biol Chem 1990; 265 (30) 18481-18489
  • 20 Dahlbäck B, Frohm B, Nelsestuen G. High affinity interaction between C4b-binding protein and vitamin K-dependent protein S in the presence of calcium. Suggestion of a third component in blood regulating the interaction. J Biol Chem 1990; 265 (27) 16082-16087
  • 21 Sugo T, Dahlbäck B, Holmgren A, Stenflo J. Calcium binding of bovine protein S. Effect of thrombin cleavage and removal of the gamma-carboxyglutamic acid-containing region. J Biol Chem 1986; 261 (11) 5116-5120
  • 22 Persson KE, Stenflo J, Linse S. , et al. Binding of calcium to anticoagulant protein S: role of the fourth EGF module. Biochemistry 2006; 45 (35) 10682-10689
  • 23 Stenflo J, Stenberg Y, Muranyi A. Calcium-binding EGF-like modules in coagulation proteinases: function of the calcium ion in module interactions. Biochim Biophys Acta 2000; 1477 (1-2): 51-63
  • 24 Muranyi A, Evenäs J, Stenberg Y, Stenflo J, Drakenberg T. Characterization of the EGF-like module pair 3-4 from vitamin K-dependent protein S using NMR spectroscopy reveals dynamics on three separate time scales and extensive effects from calcium binding. Biochemistry 2000; 39 (51) 15742-15756
  • 25 Stenberg Y, Muranyi A, Steen C, Thulin E, Drakenberg T, Stenflo J. EGF-like module pair 3-4 in vitamin K-dependent protein S: modulation of calcium affinity of module 4 by module 3, and interaction with factor X. J Mol Biol 1999; 293 (03) 653-665
  • 26 Stenberg Y, Linse S, Drakenberg T, Stenflo J. The high affinity calcium-binding sites in the epidermal growth factor module region of vitamin K-dependent protein S. J Biol Chem 1997; 272 (37) 23255-23260
  • 27 Stenberg Y, Julenius K, Dahlqvist I, Drakenberg T, Stenflo J. Calcium-binding properties of the third and fourth epidermal-growth-factor-like modules in vitamin-K-dependent protein S. Eur J Biochem 1997; 248 (01) 163-170
  • 28 Hansson K, Stenflo J. Post-translational modifications in proteins involved in blood coagulation. J Thromb Haemost 2005; 3 (12) 2633-2648
  • 29 Sasaki T, Knyazev PG, Cheburkin Y. , et al. Crystal structure of a C-terminal fragment of growth arrest-specific protein Gas6. Receptor tyrosine kinase activation by laminin G-like domains. J Biol Chem 2002; 277 (46) 44164-44170
  • 30 Heeb MJ, Marzec U, Gruber A, Hanson SR. Antithrombotic activity of protein S infused without activated protein C in a baboon thrombosis model. Thromb Haemost 2012; 107 (04) 690-698
  • 31 Fernandes N, Mosnier LO, Tonnu L, Heeb MJ. Zn2(+) -containing protein S inhibits extrinsic factor X-activating complex independently of tissue factor pathway inhibitor. J Thromb Haemost 2010; 8 (09) 1976-1985
  • 32 Heeb MJ, Prashun D, Griffin JH, Bouma BN. Plasma protein S contains zinc essential for efficient activated protein C-independent anticoagulant activity and binding to factor Xa, but not for efficient binding to tissue factor pathway inhibitor. FASEB J 2009; 23 (07) 2244-2253
  • 33 Griffin JH, Zlokovic BV, Mosnier LO. Protein C anticoagulant and cytoprotective pathways. Int J Hematol 2012; 95 (04) 333-345
  • 34 Wildhagen KC, Lutgens E, Loubele ST, ten Cate H, Nicolaes GA. The structure-function relationship of activated protein C. Lessons from natural and engineered mutations. Thromb Haemost 2011; 106 (06) 1034-1045
  • 35 Rezaie AR. Regulation of the protein C anticoagulant and antiinflammatory pathways. Curr Med Chem 2010; 17 (19) 2059-2069
  • 36 Dahlbäck B, Villoutreix BO. The anticoagulant protein C pathway. FEBS Lett 2005; 579 (15) 3310-3316
  • 37 Dahlbäck B. Pro- and anticoagulant properties of factor V in pathogenesis of thrombosis and bleeding disorders. Int J Lab Hematol 2016; 38 (Suppl. 01) 4-11
  • 38 Dahlbäck B. Blood coagulation. Lancet 2000; 355 (9215): 1627-1632
  • 39 Preston RJ, Ajzner E, Razzari C. , et al. Multifunctional specificity of the protein C/activated protein C Gla domain. J Biol Chem 2006; 281 (39) 28850-28857
  • 40 Ahnström J, Andersson HM, Canis K. , et al. Activated protein C cofactor function of protein S: a novel role for a γ-carboxyglutamic acid residue. Blood 2011; 117 (24) 6685-6693
  • 41 Heeb MJ, Mesters RM, Fernández JA, Hackeng TM, Nakasone RK, Griffin JH. Plasma protein S residues 37-50 mediate its binding to factor Va and inhibition of blood coagulation. Thromb Haemost 2013; 110 (02) 275-282
  • 42 Dahlbäck B. Purification of human vitamin K-dependent protein S and its limited proteolysis by thrombin. Biochem J 1983; 209 (03) 837-846
  • 43 Dahlbäck B, Lundwall A, Stenflo J. Localization of thrombin cleavage sites in the amino-terminal region of bovine protein S. J Biol Chem 1986; 261 (11) 5111-5115
  • 44 Suzuki K, Nishioka J, Hashimoto S. Regulation of activated protein C by thrombin-modified protein S. J Biochem 1983; 94 (03) 699-705
  • 45 Andersson HM, Arantes MJ, Crawley JT. , et al. Activated protein C cofactor function of protein S: a critical role for Asp95 in the EGF1-like domain. Blood 2010; 115 (23) 4878-4885
  • 46 Banno F, Kita T, Fernández JA. , et al. Exacerbated venous thromboembolism in mice carrying a protein S K196E mutation. Blood 2015; 126 (19) 2247-2253
  • 47 Mille-Baker B, Rezende SM, Simmonds RE, Mason PJ, Lane DA, Laffan MA. Deletion or replacement of the second EGF-like domain of protein S results in loss of APC cofactor activity. Blood 2003; 101 (04) 1416-1418
  • 48 Giri TK, García de Frutos P, Dahlbäck B. Protein S Thr103Asn mutation associated with type II deficiency reproduced in vitro and functionally characterised. Thromb Haemost 2000; 84 (03) 413-419
  • 49 Stenflo J. Contributions of Gla and EGF-like domains to the function of vitamin K-dependent coagulation factors. Crit Rev Eukaryot Gene Expr 1999; 9 (01) 59-88
  • 50 He X, Shen L, Dahlbäck B. Expression and functional characterization of chimeras between human and bovine vitamin-K-dependent protein-S-defining modules important for the species specificity of the activated protein C cofactor activity. Eur J Biochem 1995; 227 (1-2): 433-440
  • 51 Evenäs P, García de Frutos P, Nicolaes GA, Dahlbäck B. The second laminin G-type domain of protein S is indispensable for expression of full cofactor activity in activated protein C-catalysed inactivation of factor Va and factor VIIIa. Thromb Haemost 2000; 84 (02) 271-277
  • 52 Nyberg P, Dahlbäck B, García de Frutos P. The SHBG-like region of protein S is crucial for factor V-dependent APC-cofactor function. FEBS Lett 1998; 433 (1-2): 28-32
  • 53 Chattopadhyay R, Sengupta T, Majumder R. Inhibition of intrinsic Xase by protein S: a novel regulatory role of protein S independent of activated protein C. Arterioscler Thromb Vasc Biol 2012; 32 (10) 2387-2393
  • 54 Takeyama M, Nogami K, Saenko EL, Nishiya K, Ogiwara K, Shima M. Identification of a protein S-interactive site within the A2 domain of the factor VIII heavy chain. Thromb Haemost 2009; 102 (04) 645-655
  • 55 Hackeng TM, Seré KM, Tans G, Rosing J. Protein S stimulates inhibition of the tissue factor pathway by tissue factor pathway inhibitor. Proc Natl Acad Sci U S A 2006; 103 (09) 3106-3111
  • 56 Ndonwi M, Tuley EA, Broze Jr GJ. The Kunitz-3 domain of TFPI-alpha is required for protein S-dependent enhancement of factor Xa inhibition. Blood 2010; 116 (08) 1344-1351
  • 57 Ndonwi M, Broze Jr G. Protein S enhances the tissue factor pathway inhibitor inhibition of factor Xa but not its inhibition of factor VIIa-tissue factor. J Thromb Haemost 2008; 6 (06) 1044-1046
  • 58 Somajo S, Ahnström J, Fernandez-Recio J, Gierula M, Villoutreix BO, Dahlbäck B. Amino acid residues in the laminin G domains of protein S involved in tissue factor pathway inhibitor interaction. Thromb Haemost 2015; 113 (05) 976-987
  • 59 Ahnström J, Andersson HM, Hockey V. , et al. Identification of functionally important residues in TFPI Kunitz domain 3 required for the enhancement of its activity by protein S. Blood 2012; 120 (25) 5059-5062
  • 60 Wood JP, Ellery PE, Maroney SA, Mast AE. Protein S is a cofactor for platelet and endothelial tissue factor pathway inhibitor-α but not for cell surface-associated tissue factor pathway inhibitor. Arterioscler Thromb Vasc Biol 2014; 34 (01) 169-176
  • 61 Ndonwi M, Girard TJ, Broze Jr GJ. The C-terminus of tissue factor pathway inhibitor α is required for its interaction with factors V and Va. J Thromb Haemost 2012; 10 (09) 1944-1946
  • 62 Girard TJ, Tuley E, Broze Jr GJ. TFPIβ is the GPI-anchored TFPI isoform on human endothelial cells and placental microsomes. Blood 2012; 119 (05) 1256-1262
  • 63 Broze Jr GJ, Girard TJ. Tissue factor pathway inhibitor: structure-function. Front Biosci (Landmark Ed) 2012; 17: 262-280
  • 64 Wood JP, Ellery PE, Maroney SA, Mast AE. Biology of tissue factor pathway inhibitor. Blood 2014; 123 (19) 2934-2943
  • 65 Maroney SA, Mast AE. New insights into the biology of tissue factor pathway inhibitor. J Thromb Haemost 2015; 13 (Suppl. 01) S200-S207
  • 66 Mast AE. Tissue factor pathway inhibitor: multiple anticoagulant activities for a single protein. Arterioscler Thromb Vasc Biol 2016; 36 (01) 9-14
  • 67 Peraramelli S, Rosing J, Hackeng TM. TFPI-dependent activities of protein S. Thromb Res 2012; 129 (Suppl. 02) S23-S26
  • 68 Hackeng TM, Rosing J. Protein S as cofactor for TFPI. Arterioscler Thromb Vasc Biol 2009; 29 (12) 2015-2020
  • 69 Vincent LM, Tran S, Livaja R, Bensend TA, Milewicz DM, Dahlbäck B. Coagulation factor V(A2440G) causes east Texas bleeding disorder via TFPIα. J Clin Invest 2013; 123 (09) 3777-3787
  • 70 Ermert D, Blom AM. C4b-binding protein: the good, the bad and the deadly. Novel functions of an old friend. Immunol Lett 2016; 169: 82-92
  • 71 Dahlbäck B, Smith CA, Müller-Eberhard HJ. Visualization of human C4b-binding protein and its complexes with vitamin K-dependent protein S and complement protein C4b. Proc Natl Acad Sci U S A 1983; 80 (11) 3461-3465
  • 72 Zöller B, García de Frutos P, Dahlbäck B. Evaluation of the relationship between protein S and C4b-binding protein isoforms in hereditary protein S deficiency demonstrating type I and type III deficiencies to be phenotypic variants of the same genetic disease. Blood 1995; 85 (12) 3524-3531
  • 73 García de Frutos P, Alim RI, Härdig Y, Zöller B, Dahlbäck B. Differential regulation of alpha and beta chains of C4b-binding protein during acute-phase response resulting in stable plasma levels of free anticoagulant protein S. Blood 1994; 84 (03) 815-822
  • 74 Olivar R, Luque A, Naranjo-Gómez M. , et al. The α7β0 isoform of the complement regulator C4b-binding protein induces a semimature, anti-inflammatory state in dendritic cells. J Immunol 2013; 190 (06) 2857-2872
  • 75 Schwalbe R, Dahlbäck B, Hillarp A, Nelsestuen G. Assembly of protein S and C4b-binding protein on membranes. J Biol Chem 1990; 265 (27) 16074-16081
  • 76 Hafizi S, Dahlbäck B. Gas6 and protein S. Vitamin K-dependent ligands for the Axl receptor tyrosine kinase subfamily. FEBS J 2006; 273 (23) 5231-5244
  • 77 Axelrod H, Pienta KJ. Axl as a mediator of cellular growth and survival. Oncotarget 2014; 5 (19) 8818-8852
  • 78 Hafizi S, Dahlbäck B. Signalling and functional diversity within the Axl subfamily of receptor tyrosine kinases. Cytokine Growth Factor Rev 2006; 17 (04) 295-304
  • 79 Lew ED, Oh J, Burrola PG. , et al. Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities. eLife 2014; 3: 3
  • 80 Fujimori T, Grabiec AM, Kaur M. , et al. The Axl receptor tyrosine kinase is a discriminator of macrophage function in the inflamed lung. Mucosal Immunol 2015; 8 (05) 1021-1030
  • 81 Schmidt T, Ben-Batalla I, Schultze A, Loges S. Macrophage-tumor crosstalk: role of TAMR tyrosine kinase receptors and of their ligands. Cell Mol Life Sci 2012; 69 (09) 1391-1414
  • 82 Evenäs P, Dahlbäck B, García de Frutos P. The first laminin G-type domain in the SHBG-like region of protein S contains residues essential for activation of the receptor tyrosine kinase sky. Biol Chem 2000; 381 (03) 199-209
  • 83 Webb JH, Blom AM, Dahlbäck B. The binding of protein S and the protein S-C4BP complex to neutrophils is apoptosis dependent. Blood Coagul Fibrinolysis 2003; 14 (04) 355-359
  • 84 Webb JH, Blom AM, Dahlbäck B. Vitamin K-dependent protein S localizing complement regulator C4b-binding protein to the surface of apoptotic cells. J Immunol 2002; 169 (05) 2580-2586
  • 85 Happonen KE, Tran S, Mörgelin M. , et al. The Gas6-Axl protein interaction mediates endothelial uptake of platelet microparticles. J Biol Chem 2016; 291 (20) 10586-10601
  • 86 Hall MO, Obin MS, Heeb MJ, Burgess BL, Abrams TA. Both protein S and Gas6 stimulate outer segment phagocytosis by cultured rat retinal pigment epithelial cells. Exp Eye Res 2005; 81 (05) 581-591
  • 87 Anderson HA, Maylock CA, Williams JA, Paweletz CP, Shu H, Shacter E. Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat Immunol 2003; 4 (01) 87-91
  • 88 Lu Q, Lemke G. Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science 2001; 293 (5528): 306-311
  • 89 Fourgeaud L, Través PG, Tufail Y. , et al. TAM receptors regulate multiple features of microglial physiology. Nature 2016; 532 (7598): 240-244
  • 90 Recarte-Pelz P, Tàssies D, Espinosa G. , et al. Vitamin K-dependent proteins GAS6 and Protein S and TAM receptors in patients of systemic lupus erythematosus: correlation with common genetic variants and disease activity. Arthritis Res Ther 2013; 15 (02) R41
  • 91 Kuhn A, Wenzel J, Bijl M. Lupus erythematosus revisited. Semin Immunopathol 2016; 38 (01) 97-112
  • 92 Burstyn-Cohen T, Lew ED, Través PG, Burrola PG, Hash JC, Lemke G. Genetic dissection of TAM receptor-ligand interaction in retinal pigment epithelial cell phagocytosis. Neuron 2012; 76 (06) 1123-1132
  • 93 Ksantini M, Lafont E, Bocquet B, Meunier I, Hamel CP. Homozygous mutation in MERTK causes severe autosomal recessive retinitis pigmentosa. Eur J Ophthalmol 2012; 22 (04) 647-653
  • 94 Kumar A. Retinitis pigmentosa: mutations in a receptor tyrosine kinase gene, MERTK. J Biosci 2001; 26 (01) 3-5
  • 95 Lu Q, Gore M, Zhang Q. , et al. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature 1999; 398 (6729): 723-728
  • 96 Healy LM, Perron G, Won SY. , et al. MerTK is a functional regulator of myelin phagocytosis by human myeloid cells. J Immunol 2016; 196 (08) 3375-3384
  • 97 Gely-Pernot A, Coronas V, Harnois T. , et al. An endogenous vitamin K-dependent mechanism regulates cell proliferation in the brain subventricular stem cell niche. Stem Cells 2012; 30 (04) 719-731
  • 98 Zhu D, Wang Y, Singh I. , et al. Protein S controls hypoxic/ischemic blood-brain barrier disruption through the TAM receptor Tyro3 and sphingosine 1-phosphate receptor. Blood 2010; 115 (23) 4963-4972