To What Extent Are the Terminal Stages of Sepsis, Septic Shock, Systemic Inflammatory Response Syndrome, and Multiple Organ Dysfunction Syndrome Actually Driven by a Prion/Amyloid Form of Fibrin?

Douglas B. Kell, DSc, MA, DPhil1,2,3 Etheresia Pretorius, PhD4

1 School of Chemistry, The University of Manchester, Manchester, United Kingdom
2 Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
3 Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, Manchester, United Kingdom
4 Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa

Address for correspondence Douglas B. Kell, DSc, MA, DPhil, Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, United Kingdom (e-mail: dbk@manchester.ac.uk).

Abstract

A well-established development of increasing disease severity leads from sepsis through systemic inflammatory response syndrome, septic shock, multiple organ dysfunction syndrome, and cellular and organismal death. Less commonly discussed are the equally well-established coagulopathies that accompany this. We argue that a lipopolysaccharide-initiated (often disseminated intravascular) coagulation is accompanied by a proteolysis of fibrinogen such that formed fibrin is both inflammatory and resistant to fibrinolysis. In particular, we argue that the form of fibrin generated is amyloid in nature because much of its normal α-helical content is transformed to β-sheets, as occurs with other proteins in established amyloidogenic and prion diseases. We hypothesize that these processes of amyloidogenic clotting and the attendant coagulopathies play a role in the passage along the aforementioned pathways to organismal death, and that their inhibition would be of significant therapeutic value, a claim for which there is considerable emerging evidence.

Keywords
► sepsis
► SIRS
► dormant bacteria
► septic shock
► MODS

Sepsis is a disease with high mortality.1–7 However, the original notion of sepsis as the invasion of blood and tissues by pathogenic microorganisms has long come to be replaced, in the antibiotic era, by the recognition that in many cases, the main causes of death arise not so much from the replication of the pathogen per se but from the host’s “innate immune” response to the pathogen.8–11 In particular, microbial replication is not even necessary (and most bacteria in nature are dormant12–16), as this response is driven by very potent17 inflammation-inducing agents such as the lipopolysaccharides (LPSs) of gram-negative bacteria18 and equivalent cell wall materials such as lipoteichoic acids from gram-positive bacteria19–22. To this end, such release may even be worsened (i.e., the Jarisch–Herxheimer reaction23–26) by antibiotic...
In unfavorable cases, this leads to an established cascade (►Fig. 1) in which the innate immune response, involving proinflammatory cytokines such as interleukins 6, 8, and 1β, monocyte chemotractant protein-1, and tissue necrosis factor α becomes a “cytokine storm” leading to a "systemic inflammatory response syndrome" (SIRS), multiple organ failure (MOF, also known as multiple organ dysfunction syndrome, MODS), and finally organ failure. All of the above is well known and may be taken as a noncontroversial background. Nevertheless, it is still unclear whether apoptotic and necrotic cell death is minimal or significant. Despite this knowledge, “the recent inability of activated protein C to show an outcome benefit in a randomized controlled multicenter trial and the subsequent withdrawal of the product from commercial use add to the growing stockpile of failed therapeutics for sepsis.”

Most recently (but see also Churpek et al), definitions of sepsis have come to be based on organ function and the Sequential (Sepsis-Related) Organ Failure Assessment (SOFA) Scores. These latter take into account the multisystem nature of sepsis and include respiratory, hemostatic (but only based on platelet counts), hepatic, cardiovascular, renal, and central nervous system measurements. A SOFA score of 2 or greater typically means at least a 10% mortality rate. Specifically, sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Septic shock is defined as a subset of sepsis in which underlying circulatory and cellular metabolism abnormalities are profound enough to increase mortality substantially.

►Table 1 (based on Vincent et al) shows the potential values that contribute to the SOFA score.

Absent from ►Fig. 1, and from the usual commentaries of this type, is any significant role of coagulopathies, although these too are a well-established accompaniment of SIRS/sepsis, and they will be our focus here. They

Table 1 Potential values that contribute to the SOFA score

<table>
<thead>
<tr>
<th>SOFA score</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiration</td>
<td>PaO2/FiO2 (mm Hg)</td>
<td><400</td>
<td><300</td>
<td><200 (with respiratory support)</td>
</tr>
<tr>
<td>Coagulation</td>
<td>10^3/platelets/mm</td>
<td><150</td>
<td><100</td>
<td><50</td>
</tr>
<tr>
<td>Liver</td>
<td>Bilirubin mg/dL (μM)</td>
<td>1.2–1.9 (20–32)</td>
<td>2–5.9 (33–101)</td>
<td>6–11.9 (102–204)</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>Hypotension</td>
<td>MAp < 70 mm Hg</td>
<td>Dopamine ≤ 5 or dobutamine (any dose)</td>
<td>Dopamine > 5 or epinephrine < 0.1 or norepinephrine ≤ 0.1</td>
</tr>
<tr>
<td>CNS</td>
<td>Glasgow Coma Score</td>
<td>13–14</td>
<td>10–12</td>
<td>6–9</td>
</tr>
<tr>
<td>Renal</td>
<td>Creatinine, mg/dL (μM) or urine output</td>
<td>1.2–1.9 (110–170)</td>
<td>2–3.4 (171–299)</td>
<td>3.5–4.9 (300–440) or <500 mL/d</td>
</tr>
</tbody>
</table>

Abbreviations: CNS, central nervous system; SOFA, Sequential (Sepsis-Related) Organ Failure Assessment.

*Based on Vincent et al and shows the potential values that contribute to the SOFA score.

*Catecholamine and adrenergic agents administered for at least 1 hour; doses in μg/kg/min.
form part of an emerging systems biology analysis, in which iron dysregulation and an initially minor infection (e.g., in rheumatoid arthritis) are seen to underpin the etiology of many chronic inflammatory diseases normally considered (as once were gastric ulcers) to lack a microbial component. Here we develop these ideas for those conditions that are recognized as involving a genuine initial microbial invasion, together with sepsis and inflammation driven (in particular) by the cell wall components of bacteria (although we note that the same kinds of arguments apply to viruses and to other infections).

Normal Blood Coagulation and Coagulopathies

Historically, there are two main pathways of activation described that lead “normal” blood coagulation to form a clot, as occurs, for example, in response to vessel wall damage or exposure of blood to negatively charged surfaces. They have been expertly reviewed many times (e.g., known in the older literature, respectively, as “extrinsic” and “intrinsic” pathways). Fig. 2 shows a basic model of coagulation (redrawn from Kell and Pretorius under a CC-BY license); typically, assembly of fibrin fibers proceeds in a stepwise fashion. In short, after damage to a blood vessel, collagen is exposed and factor VII interacts with tissue factor (TF), forming a complex called TF-FVIIa. FXa and its cofactor Va form the prothrombinase complex and activate thrombin through prothrombin. Finally, the terminal stages of the coagulation pathway happens, where a cross-linked fibrin polymer is formed as a result of fibrinogen (typically present in plasma at 2–4 g/L) conversion to fibrin and cross-linking due to the activation of FXIII, a transglutaminase. Thrombin activates FXIII into FXIIIA, which, in turn, acts on soluble and insoluble fibrin to polymerize it into insoluble cross-linked fibrin clot. This fibrin clot, when viewed under a scanning electron microscope, consists of individually visible fibrin fibers, discussed in the next paragraphs (see Fig. 3A for a representative healthy clot structure created when thrombin is added to plasma).

The normal picture of fibrinogen polymerization involves the removal of two fibrinopeptides (i.e., fibrinopeptides A and B) from fibrinogen, which is normally rich in α-helices, leading to its self-association through “knobs and holes,” but with otherwise no major changes in secondary structure.

Coagulopathies occur when the rate of clot formation or dissolution is unusually fast or slow, and in the case of chronic inflammatory diseases, these seem largely to coexist as hypercoagulation and hypofibrinolysis, arguably implying a common cause. In a series of papers, we have shown in several diseases, such as stroke, type 2 diabetes, Alzheimer’s disease, and hereditary hemochromatosis, that the fibrin clots induced by added thrombin adopted the form of “dense matted deposits” instead of their usual “spaghetti-like” appearance. The same kinds of effect could also be induced by unliganded (i.e., free) iron, although no molecular explanation was (or could be) given. We pick this up in the Amyloid-Like Conformational Transitions in Fibrinogen section. First however, we need to deal with two other topics.

Fig. 2 The classical coagulation pathways, where assembly of fibrin fibers proceeds in a stepwise fashion (redrawn from Kell and Pretorius under an open access CC-BY license).
Endotoxin-Induced “Disseminated Intravascular Coagulation”

Endotoxin (LPS) may also induce a runaway form of hypercoagulation known as disseminated intravascular coagulation (DIC). There is significant evidence now that DIC is reasonably well defined and that it can directly lead to MOF and death (Cunningham and Nelson, and see the following). We hypothesize here that the form of clotting in DIC in fact involves autocatalytic fibrin(ogen) self-organization leading to amyloid formation, which is consistent with the faster clot formation in the presence of endotoxin and which we have recently shown can occur in vitro with miniscule amounts of LPS. In particular, this may be a major contributor to the various stages of sepsis, SIRS, MODS, and ultimately of organismal death.

Prions, Protein Free Energies, and Amyloid Proteins

Although it was originally shown that at least some proteins, when denatured and renatured, could revert to their original conformation, implying that this was (isoenergetic with) the one of lowest free energy, this is now known not to be universal. Leaving aside chaperones and the like, one field in which proteins of the same sequence are well known to adopt radically different conformations, with a much more extensive β-sheet component (that is indeed thermodynamically more stable), is that of prion biology. Thus, the prion protein is normally in an α-helix-rich conformation known as PrPc. However, it can also adopt a proteinase K-resistant form of the same sequence, known as PrPSc. The PrPc and PrPSc conformations and the catalysis of the conversion to itself by the latter of the former are very well known. The key point for us here, however, is indeed that this definitely implies that proteins that may initially fold into a certain, ostensibly “native,” conformation can in fact adopt stable and more β-sheet-rich conformations of a lower free energy, separated from that of the original conformation by a potentially significant energy barrier.

Amyloid-Like Conformational Transitions in Fibrin(ogen)

As mentioned earlier, the general view (also see the following) is that no major secondary structural changes occur during
normal fibrin formation. However, we know of at least three circumstances in which fibrin can (i.e., is known to) adopt a β-sheet-rich conformation: (1) in the case of specific mutant sequences of the fibrinogen a chain, (2) when fibrin is stretched mechanically beyond a certain limit, and (3) when formed in the presence of certain small molecules, including bacterial LPS. Thus, it is well established that fibrin can form β-sheet-rich amyloids, although it is assumed that conventional blood clotting involves only a "knobs-and-holes" mechanism, without any major changes in secondary structure. We hypothesize here that the "dense matted deposits" seen earlier are in fact β-sheet-rich amyloids, and that this is a coagulopathy in particular that contributes significantly to the procession of sepsis along or through the cascade of toxicity outlined in Fig. 1. To be specific, we consider that the binding of the LPS must be to fibrinogen itself since only this is preexisting and we have demonstrated it directly using isothermal calorimetry. We note too that there is almost no "free" LPS except immediately after its addition/liberation from a bacterium, and that the kinetics of fibrinogen polymerization during thrombin-induced clotting are so fast that it is not necessary to invoke subsequent binding of LPS to proteolysis and so on as part of the mechanism of amyloidogenesis and toxicity.

In particular, thioflavin T (ThT) is a stain whose fluorescence (when excited at 440–450 nm or so) is massively enhanced upon binding to β-sheet-rich amyloids whose conformation differs markedly from that of "normal" β-sheets in proteins, else it would stain most such proteins. Fig. 3A to C show micrographs taken with a Zeiss superresolution microscope using Airyscan technology (Carl Zeiss), and Fig. 3D shows a micrograph taken using a Zeiss confocal microscope (see legend for specific detail). Fig. 3A is a micrograph of healthy platelet poor plasma (PPP) with added ThT and thrombin. This is a representative micrograph to show "normal" clot structure, whereas Fig. 3B and D shows healthy PPP with added LPS and ThT. High-resolution Airyscan technology (Fig. 3B) shows ThT binding to areas where β-sheet-rich amyloids were induced by LPS. Fig. 3C shows PPP preexposed to LPS, followed by exposure to LPS-binding protein, ThT, and thrombin. LPS-binding protein was able to reverse the formation of the β-sheet-rich amyloids areas created by preexposure to LPS. Confocal microscopy (Fig. 3D) also shows this ThT binding to β-sheet-rich amyloids areas. However, individual binding areas are not as clearly visible as with the Airyscan technology. Nonetheless, the extent of β-amyloid formation in the LPS-treated over the two controls is very striking.

We also note the important analyses of Strickland et al to the effect that β-amyloid can interact with fibrinogen and cause it to become refractory to fibrinolysis.

Inflammatory Nature of Fibrin

The fact that fibrin itself is, or can be, inflammatory is well established and does not need further elaboration. Our main point here is that in none of these studies has it been established whether (or to what extent) the fibrin is in an amyloid form or not so far. Certainly, it is very well established that amyloids can be inflammatory.

Further Evidence for the "Trigger" Role of LPS in Large-Scale Amyloid Formation

In our previous studies, we found that LPS (endotoxin) at a concentration of just 0.2 ng/L could trigger the conversion of some 10^8 times more fibrinogen molecules, and that the fibrin fibers so formed were amyloid in nature. A very large amplification of structural molecular transitions could also be induced by LPS in a nematic liquid crystal. Only some kind of autocatalytic processes can easily explain this kind of polymerization, just as occurs in prions, where iron may also be involved. To be explicit, the only feasible explanation is one in which an initial fibrinogen molecule with bound LPS adopts, at least on the loss of its fibrinopeptides, conformations in which the subsequent fibrinopeptide-less fibrinogens must also change their conformations to bind to it and so on as fibrinogen becomes protofibrils, protofibrils become fibrils, and so on. Put another way, if LPS is the only (and highly substoichiometric) addition to thrombin-induced fibrin formation, there must be an "autocatalytic process," somewhat analogous to a prion, that must be taking place since rather than having conventional strands of fibrin, we have amorphous, denatured β sheets.

Cytotoxicity of Amyloids

Cytotoxicity of amyloids is so well known that it barely needs rehearsing. However, the relative toxicities of soluble material, protofibrils, fibrils, and so on are less well understood. In part because they can equilibrate with each other even if added as a "pure" component (of a given narrow NB equilibrate range). Although the larger fibrils are much more easily observable microscopically, there is a great deal of evidence that it is the smaller ones that are the more cytotoxic. So far as is known, almost all (cf. Holm et al) the established forms of amyloid are cytotoxic. However, the tests have not yet been performed for the fibrin version since it has only very recently been discovered. This is an urgent task for the future.

Sequelae Consistent with the Role of Amyloids in the "Sepsis Cascade" to Organ Failure and Death

If vascular or systemic amyloidogenesis really is a significant contributor to the worsening patient conditions as septic shock moves toward MOF/MODS and death, with the cytotoxic amyloids (whether from fibrin and/or otherwise) in effect being largely responsible for the MOF, then one might expect it to be visible as amyloid deposits in organs such as the kidney (whether as biopsies or postmortem). It is certainly possible to find evidence for this and our proposal is that such amyloid should be sought using ThT or other suitable staining in autopsy tissue.
Hypo- or Hypertensive States

A hallmark of most of the chronic, inflammatory diseases that we have considered here and elsewhere (as cited) is that they are either normotensive or (to varying degrees) hypertensive. By contrast, sepsis and septic shock are strongly hypotensive (accompanied by hypoperfusion), and their normalization is considered a crucial factor for lowering mortality. Consequently, this bears a brief discussion. Of course, at one level, it is common in biology that something can be a stimulus (e.g., of blood pressure) at a low concentration and can be an inhibitor at a high concentration (this is known as “hormesis”). At a descriptive level, this is clearly happening here. As it stands, however, we can find no literature that has compared changes in tension as the dose of endotoxin is varied, with the doses given in such studies of endotoxin-induced hypotension (and other sequelae) could be relieved by antithrombin (e.g.,), implying a contributing role for coagulopathies in the hypotension otherwise observed, albeit other mechanisms are possible.

How Might This Understanding Lead to Improved Treatment Options?

Over the years, there have been many high-profile failures of therapies for various aspects of severe inflammation, sepsis, septic shock, and SIRS. These include therapies aimed at endotoxin itself (Centoxin), and the use of recombinant activated protein C or Drotrecogin alfa. Anticytokine and anti-inflammatory treatments have also had, at best, mixed results. However, the overall picture that we have come to is given in — Fig. 4. This implies that we might hope to stop the progress of the sepsis/SIRS/MODS cascade at any (preferably several) of several other places, including through iron chelation, the use of anti-inflammatory agents, the use of anticoagulants such as heparin or antithrombin, and the use of stimulants of fibrinolysis. The success of heparin (see also Zarychanski et al, van Roessel et al, and Okamoto et al) is especially noteworthy in the context of the present hypothesis, though it may have multiple (not simply directly anticoagulant) actions. The same is true of antithrombin, and antithrombin has also not been efficacious, especially in combination with heparin and is globally not recommended in sepsis therapy guidelines. Indeed, suppressing coagulation in sepsis globally may be inimical, as it is thought to serve a protective role in the initial stages of the disease. It is also noteworthy that high-density lipoprotein (HDL) cholesterol is a protective agent against sepsis. (HDL are antioxidant and anti-inflammatory agents, the use of which has also not been efficacious, especially in combination with iron chelation). Therefore, the beneficial role of certain statins in sepsis should be seen in the context of their much more potent anti-inflammatory role rather than in any (modest) role involved in lowering overall serum cholesterol. Phospholipid emulsions may also serve.

Fig. 4 A systems biology model of the development of coagulopathies during sepsis, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome. An elementary systems biology model of how iron dysregulation can stimulate dormant bacterial growth that can, in turn, lead to antigen production (e.g., of lipopolysaccharide [LPS]) that can then trigger inflammation leading to cell death and a variety of diseases. While it is recognized that this simple diagram is very far from capturing the richness of these phenomena, there is abundant evidence for each of these steps, starting with an infection/gut dysbiosis and the creation of a (dormant) blood and tissue microbiome. This is typically accompanied by iron dysregulation, which is known to be present in many diseases, as both cause and result and as an important cause of inflammation and even organism death. Iron, in turn, feeds bacterial growth, leading to production of, for example, LPS with accompanying upregulated inflammatory cytokine profile, leading to disease. In inflammation both apoptotic death and coagulopathies are well-known phenomena. In turn, apoptotic death can lead to organism death.
We have noted previously (reviewed in Kell and Pretorius) that such “dense matter deposits” (now recognized as amyloid forms) are much more resistant to fibrinolysis than is “normal” fibrinogen. The working hypothesis here is that the β-sheet-rich forms are more resistant to proteolysis because (as in prions, where the structures are known) the residues normally targeted by the relevant proteases are no longer exposed. Clearly, the removal of such structures would benefit from the development of novel proteases to which they are susceptible.

Recombinant soluble human thrombomodulin (TM-α) is a novel anticoagulant drug and has been found to have significant efficacy in the treatment of sepsis-based DIC, albeit fully powered randomized trials are awaited, again adding further weight to our hypothesis. As Okamoto et al. point out, “In the European Union and the USA, the 2012 guidelines of the Surviving Sepsis Campaign do not recommend treatment for septic DIC” and “aggressive treatment of septic DIC is encouraged,” and that “that Japan is one of the countries that most effectively treats patients with septic DIC.” A recent meta-analysis of randomized controlled trials for the efficacy and safety of anticoagulant therapy demonstrated that such therapy has a survival benefit in those with sepsis-induced DIC, but not in the overall population with sepsis or even in populations with sepsis-induced coagulopathy. We note that the influence of soluble TM may be mediated by its indirect thrombin inhibition by binding and not localizing it to a site where protein C is activated.

Thus, if it is accepted that the type of fibrin that is formed is substantially of the amyloid variety, then anticoagulant and other drugs that inhibit or reverse such amyloid processes should also be of value as they seem to be in Alzheimer-type dementia.

Concluding Remarks

We conclude by showing our line of thought in Fig. 5. There is by now abundant evidence that coagulopathies involving fibrin clots are a major part of sepsis, SIRS, septic shock, MODS, DIC, and organismal death. We have invoked further evidence that the type of fibrin involved is an amyloid form and have suggested that it is this that is especially damaging. This definitely needs to be tested further, for instance, using appropriate stains and/or X-ray measurements in concert with cellular toxicity assays. The former could easily be performed in or near the intensive therapy unit. LPS and other substances have now been shown to cause anomalous forms of fibrin, which opens up many novel lines of work, such that reducing or eliminating them might be worthwhile, for example, with LPS-binding protein. Finally, as a corollary of the above, we suggest that anticoagulant therapies that inhibit or reverse those β-amyloid forms of fibrin production will be especially valuable. To this end, lowering the levels of fibrinogen itself would seem to be a desirable aim.

Conflict of Interest
The authors have nothing to disclose.

Ethical Approval Disclosure
Ethical approval was granted by the University of Pretoria for all human studies (Human Ethics Committee: Faculty of Health Sciences) to Etheresia Pretorius.
Funding
We thank the Biotechnology and Biological Sciences Research Council (grant BB/L025752/1) as well as the National Research Foundation (NRF) and Medical Research Council (MRC) of South Africa for supporting this collaboration.

Acknowledgments
D.B.K. thanks Prof. Nigel Harper for a very useful discussion. We also thank the referees and the journal editors for exceptionally careful and thoughtful reviews that helped improve the manuscript considerably.

References
Amyloid Coagulopathies in Septic Shock

Kell, Pretorius

143 Litvinov RI, Faizullin DA, Zuev YF, Weisel JW. The α-helix to β-sheet transition in stretched and compressed hydrated fibrin clots. Biochemistry 2015;54(28):4297–4306
144 Zhang X, Ran C. Dual functional small molecule probes as fluorophore and ligand for misfolding proteins. Curr Org Chem 2013;17(06):6
Singh N, Asthana A, Baksi S, et al. The prion-ZIP connection: from
altering fibrin structure and attenuating plasminogen binding to

and structural analysis of the interaction between β-amyloid

decreases inflammation and delays the onset of demyelina-
tion in a tumor necrosis factor transgenic mouse model for
6698–6703

Levi M, van der Poll T, Bùller HR. Bidirectional relation between
2698–2704

Flick MJ, Lajunesse CM, Talmage KE, et al. Fibrinogen
and structural analysis of the interaction between β-amyloid

Cortes-Canteli M, Paul J, Norris EH, et al. Fibrinogen and
beta-amyloid precursor protein and alpha synuclein translation,
implications for iron and inflammation in neurodegenerative disorders. Biochim
Biophys Acta 2009;1790(07):615–628

Hirohata M, Ono K, Yamada M. Non-steroidal anti-in
flammatory drugs as anti-amyloidogenic compounds. Curr Pharm Des 2008;
14(30):3280–3294

Minter MR, Taylor JM, Crack PJ. The contribution of neuroin-
flammation to amyloid toxicity in Alzheimer's disease. J Neuro-
chem 2016;136(03):457–474

Spaulding CN, Dodson KW, Chapman MR, Hultgren SJ. Fueling
the fire with fibers: bacterial amyloids promote inflammatory disorders. Cell Host Microbe 2015;18(01):1–2

Lin IH, Miller DS, Bertics PJ, Murphy CJ, de Pablo JJ, Abbott NL.
Endotoxin-induced structural transformations in liquid crystal-
line droplets. Science 2011;332(6035):1297–1300

Miller DS, Abbott NL. Influence of droplet size, pH and ionic
strength on endotoxin-triggered ordering transitions in liquid crystal

Carter MC, Miller DS, Jennings J, et al. Synthetic mimics of
bacterial lipid A trigger optical transitions in liquid crystal
microdroplets at ultralow picogram-per-milliliter concentra-

Singh N, Haldar S, Tripathi AK, McElwee MK, Horback K, Beserra A. Iron in

Singh N. The role of iron in prion disease and other neurode-

Singh N, Asthana A, Baks S, et al. The prion-ZIP connection: from
cousins to partners in iron uptake. Prion 2015;9(06):420–428

Ahmed M, Davis J, Aucoin D, et al. Structural conversion of

Hefi F, Goure WF, Jerecic J, Iverson KS, Walicke PA, Kraft GA. The

Kayed R, Lasagna-Reeves CA. Molecular mechanisms of amyloid

Liu B, Moloney A, Meehan S, et al. Iron promotes the toxicity of

and local toxicity of amyloid-beta plaques in a mouse model of

Miranda S, Opazo C, Larrondo LF, et al. The role of oxidative stress

Rival T, Page RM, Chandraratna DS, et al. Fenton chemistry and
oxidative stress mediate the toxicity of the beta-amyloid peptide in

Sengupta U, Nilson AN, Kayed R. The role of amyloid-β oligomers in
toxicity, propagation, and immunotherapy. EBioMedicine 2016;6:42–49

Uversky VN. Mysterious oligomerization of the amyloidogenic
proteins. FEBS J 2010;277(14):2940–2953

Janson J, Ashley RH, Harrison D, McIntyre S, Butler PC. The
mechanism of islet amyloid polypeptide toxicity is membrane
disruption by intermediate-sized toxic amyloid particles. Diabe-
etes 1999;48(03):491–498

Bucciantini M, Giannoni E, Chiti F, et al. Inherent toxicity of
aggregates implies a common mechanism for protein misfolding

Kayed R, Head E, Thompson JL, et al. Common structure of
soluble amyloid oligomers implies common mechanism of
pathogenesis. Science 2003;300(5618):486–489

aggregates could be generic toxins in higher organisms. J Neu-
rosci 2006;26(31):8160–8167

Glabe CG. Common mechanisms of amyloid oligomer pathogenesis

Konarkowska B, Atken JF, Kistler J, Zhang S, Cooper GJ. The
aggregation potential of human amylin determines its cytotoxicity

Meier JJ, Kayed R, Lin CY, et al. Inhibition of human IAPP fibril
formation does not prevent beta-cell death: evidence for distinct actions of oligomers and fibrils of human IAPP. Am J Physiol
Endocrinol Metab 2006;291(06):E1317–E1324

Haass C, Selkoe DJ. Soluble protein oligomers in neurodegenera-

Xue WF, Hellewell AL, Gosal WS, Homans SW, Hewitt EW,
Radford SE. Fibril fragmentation enhances amyloid cytotoxicity.
J Biol Chem 2009;284(49):34272–34282

Atken JF, Loomes KM, Scott DW, et al. Tetracycline treatment
retards the onset and slows the progression of diabetes in human

Xue WF, Hellewell AL, Hewitt EW, Radford SE. Fibril fragmenta-
tion in amyloid assembly and cytotoxicity: when size matters.
Prion 2010;4(01):20–25

Fändrich M. Oligomeric intermediates in amyloid formation:

Göransson AL, Nilsson KPR, Kågedal K, Brorsson AC. Identification
of distinct physiochemical properties of toxic prefibrillar species formed by Aβ peptide variants. Biochem Biophy Res
Commun 2012;420(04):895–900

Stefani M. Structural features and cytotoxicity of amyloid oligo-
mers: implications in Alzheimer's disease and other diseases with

Seminars in Thrombosis & Hemostasis Vol. 44 No. 3/2018

256 Kell DB. Finding novel pharmaceuticals in the systems biology era using multiple effective drug targets, phenotypic screening and knowledge of transporters: where drug discovery went wrong and how to fix it. FEBS J 2013;280(23):5957–5980

265 van Roessel S, van der Laan AM, de Pont A-CJM. What is the best heparin to treat sepsis with? Crit Care Med 2015;43(06):e212–e213

274 Chien JY, Jerng JS, Yu CJ, Yang PC. Low serum level of high-density lipoprotein cholesterol is a poor prognostic factor for severe sepsis. Crit Care Med 2005;33(08):1688–1693

284 Harvey M, Cave G. Co-administration of phospholipid emulsion with first dose bactericidal antibiotic may retard progression of the sepsis response in gram negative septicemia. Med Hypotheses 2014;83(05):563–565

