Journal of Pediatric Neurology 2018; 16(02): 078-093
DOI: 10.1055/s-0037-1604216
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Pediatric Functional Magnetic Resonance Imaging: Clinical Applications

Mai-Lan Ho
1   Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States
,
Kirk M. Welker
1   Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States
› Author Affiliations
Further Information

Publication History

01 December 2016

05 June 2017

Publication Date:
20 July 2017 (online)

Abstract

Task-based functional magnetic resonance imaging (fMRI) is an imaging technique based on blood oxygenation level-dependent imaging. Maps of brain activation are generated during the performance of designated tasks involving eloquent functions, such as motor, sensory, visual, auditory, and/or language. Optimal performance of fMRI in children requires consideration of multiple psychological and physiological parameters. Also, a solid technical understanding is needed for appropriate study design, implementation, processing, and interpretation. In this article, the authors review the key principles of fMRI technique, study design, data processing, and interpretation. The important clinical applications in the pediatric population will be highlighted, accompanied by example cases from their institution.

 
  • References

  • 1 ACR–ASNR–SPR practice parameter for the performance of functional magnetic resonance imaging (fMRI) of the brain. Res. 18–2012, Amended 2014 (Res. 39). Available at: https://www.acr.org/∼/media/83D4D6452E9E4FC1B451D20CFB52D77A.pdf . Accessed July 05, 2017
  • 2 Logothetis NK. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 2002; 357 (1424): 1003-1037
  • 3 Logothetis NK. The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 2003; 23 (10) 3963-3971
  • 4 Forster BB, MacKay AL, Whittall KP. , et al. Functional magnetic resonance imaging: the basics of blood-oxygen-level dependent (BOLD) imaging. Can Assoc Radiol J 1998; 49 (05) 320-329
  • 5 DeYoe EA, Bandettini P, Neitz J, Miller D, Winans P. Functional magnetic resonance imaging (FMRI) of the human brain. J Neurosci Methods 1994; 54 (02) 171-187
  • 6 Raschle N, Zuk J, Ortiz-Mantilla S. , et al. Pediatric neuroimaging in early childhood and infancy: challenges and practical guidelines. Ann N Y Acad Sci 2012; 1252: 43-50
  • 7 Rajagopal A, Byars A, Schapiro M, Lee GR, Holland SK. Success rates for functional MR imaging in children. Am J Neuroradiol 2014; 35 (12) 2319-2325
  • 8 Byars AW, Holland SK, Strawsburg RH. , et al. Practical aspects of conducting large-scale functional magnetic resonance imaging studies in children. J Child Neurol 2002; 17 (12) 885-890
  • 9 Pine DS, Guyer AE, Leibenluft E. Functional magnetic resonance imaging and pediatric anxiety. J Am Acad Child Adolesc Psychiatry 2008; 47 (11) 1217-1221
  • 10 Shechner T, Wakschlag N, Britton JC, Jarcho J, Ernst M, Pine DS. Empirical examination of the potential adverse psychological effects associated with pediatric FMRI scanning. J Child Adolesc Psychopharmacol 2013; 23 (05) 357-362
  • 11 Schlund MW, Cataldo MF, Siegle GJ. , et al. Pediatric functional magnetic resonance neuroimaging: tactics for encouraging task compliance. Behav Brain Funct 2011; 7: 10
  • 12 Connors CM, Singh I. What we should really worry about in pediatric functional magnetic resonance imaging (FMRI). Am J Bioeth 2009; 9 (01) 16-18
  • 13 Hertz-Pannier L, Noulhiane M, Rodrigo S, Chiron C. Pretherapeutic functional magnetic resonance imaging in children. Neuroimaging Clin N Am 2014; 24 (04) 639-653
  • 14 Yerys BE, Jankowski KF, Shook D. , et al. The fMRI success rate of children and adolescents: typical development, epilepsy, attention deficit/hyperactivity disorder, and autism spectrum disorders. Hum Brain Mapp 2009; 30 (10) 3426-3435
  • 15 Freilich ER, Gaillard WD. Utility of functional MRI in pediatric neurology. Curr Neurol Neurosci Rep 2010; 10 (01) 40-46
  • 16 Altman NR, Bernal B. Pediatric applications of functional magnetic resonance imaging. Pediatr Radiol 2015; 45 (Suppl. 03) S382-S396
  • 17 Logan WJ. Functional magnetic resonance imaging in children. Semin Pediatr Neurol 1999; 6 (02) 78-86
  • 18 Greene DJ, Black KJ, Schlaggar BL. Considerations for MRI study design and implementation in pediatric and clinical populations. Dev Cogn Neurosci 2016; 18: 101-112
  • 19 Gaillard WD, Grandin CB, Xu B. Developmental aspects of pediatric fMRI: considerations for image acquisition, analysis, and interpretation. Neuroimage 2001; 13 (02) 239-249
  • 20 Wilke M, Holland SK, Myseros JS, Schmithorst VJ, Ball Jr WS. Functional magnetic resonance imaging in pediatrics. Neuropediatrics 2003; 34 (05) 225-233
  • 21 Jiang C, Yi L, Su S. , et al. Diurnal variations in neural activity of healthy human brain decoded with resting-state blood oxygen level dependent fMRI. Front Hum Neurosci 2016; 10: 634
  • 22 Gosseries O, Pistoia F, Charland-Verville V, Carolei A, Sacco S, Laureys S. The role of neuroimaging techniques in establishing diagnosis, prognosis and therapy in disorders of consciousness. Open Neuroimaging J 2016; 10: 52-68
  • 23 DiFrancesco MW, Robertson SA, Karunanayaka P, Holland SK. BOLD fMRI in infants under sedation: Comparing the impact of pentobarbital and propofol on auditory and language activation. J Magn Reson Imaging 2013; 38 (05) 1184-1195
  • 24 Gemma M, de Vitis A, Baldoli C. , et al. Functional magnetic resonance imaging (fMRI) in children sedated with propofol or midazolam. J Neurosurg Anesthesiol 2009; 21 (03) 253-258
  • 25 Shinohe Y, Higuchi S, Sasaki M. , et al. Changes in brain activation induced by visual stimulus during and after propofol conscious sedation: a functional MRI study. Neuroreport 2016; 27 (17) 1256-1260
  • 26 Bernal B, Grossman S, Gonzalez R, Altman N. FMRI under sedation: what is the best choice in children?. J Clin Med Res 2012; 4 (06) 363-370
  • 27 Starbuck VN, Kay GG, Platenberg RC, Lin CS, Zielinski BA. Functional magnetic resonance imaging reflects changes in brain functioning with sedation. Hum Psychopharmacol 2000; 15 (08) 613-618
  • 28 Graham AM, Pfeifer JH, Fisher PA, Lin W, Gao W, Fair DA. The potential of infant fMRI research and the study of early life stress as a promising exemplar. Dev Cogn Neurosci 2015; 12: 12-39
  • 29 Souweidane MM, Kim KH, McDowall R. , et al. Brain mapping in sedated infants and young children with passive-functional magnetic resonance imaging. Pediatr Neurosurg 1999; 30 (02) 86-92
  • 30 Choudhri AF, Patel RM, Siddiqui A, Whitehead MT, Wheless JW. Cortical activation through passive-motion functional MRI. AJNR Am J Neuroradiol 2015; 36 (09) 1675-1681
  • 31 Yetkin FZ, Mueller WM, Hammeke TA, Morris III GL, Haughton VM. Functional magnetic resonance imaging mapping of the sensorimotor cortex with tactile stimulation. Neurosurgery 1995; 36 (05) 921-925
  • 32 Lee MH, Miller-Thomas MM, Benzinger TL. , et al. Clinical resting-state fMRI in the preoperative setting: are we ready for prime time?. Top Magn Reson Imaging 2016; 25 (01) 11-18
  • 33 Lowe MJ, Sakaie KE, Beall EB. , et al. Modern methods for interrogating the human connectome. J Int Neuropsychol Soc 2016; 22 (02) 105-119
  • 34 Chang C, Cunningham JP, Glover GH. Influence of heart rate on the BOLD signal: the cardiac response function. Neuroimage 2009; 44 (03) 857-869
  • 35 Birn RM, Smith MA, Jones TB, Bandettini PA. The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. Neuroimage 2008; 40 (02) 644-654
  • 36 Ramsey NF, Hoogduin H, Jansma JM. Functional MRI experiments: acquisition, analysis and interpretation of data. Eur Neuropsychopharmacol 2002; 12 (06) 517-526
  • 37 Buchbinder BR. Functional magnetic resonance imaging. Handb Clin Neurol 2016; 135: 61-92
  • 38 Soares JM, Magalhães R, Moreira PS. , et al. A hitchhiker's guide to functional magnetic resonance imaging. Front Neurosci 2016; 10: 515
  • 39 Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R. Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 2006; 26 (Suppl. 01) S205-S223
  • 40 Palacios EM, Martin AJ, Boss MA. , et al; TRACK-TBI Investigators. Toward precision and reproducibility of diffusion tensor imaging: a multicenter diffusion phantom and traveling volunteer study. Am J Neuroradiol 2017; 38 (03) 537-545
  • 41 Jones DK. Precision and accuracy in diffusion tensor magnetic resonance imaging. Top Magn Reson Imaging 2010; 21 (02) 87-99
  • 42 Qiu A, Mori S, Miller MI. Diffusion tensor imaging for understanding brain development in early life. Annu Rev Psychol 2015; 66: 853-876
  • 43 Moeller S, Yacoub E, Olman CA. , et al. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med 2010; 63 (05) 1144-1153
  • 44 Wedeen VJ, Wang RP, Schmahmann JD. , et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 2008; 41 (04) 1267-1277
  • 45 Rempp KA, Brix G, Wenz F, Becker CR, Gückel F, Lorenz WJ. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994; 193 (03) 637-641
  • 46 Leu K, Boxerman JL, Ellingson BM. Effects of MRI protocol parameters, preload injection dose, fractionation strategies, and leakage correction algorithms on the fidelity of dynamic-susceptibility contrast MRI estimates of relative cerebral blood volume in gliomas. Am J Neuroradiol 2017; 38 (03) 478-484
  • 47 Wolf RL, Detre JA. Clinical neuroimaging using arterial spin-labeled perfusion magnetic resonance imaging. Neurotherapeutics 2007; 4 (03) 346-359
  • 48 Detre JA, Rao H, Wang DJ, Chen YF, Wang Z. Applications of arterial spin labeled MRI in the brain. J Magn Reson Imaging 2012; 35 (05) 1026-1037
  • 49 Telischak NA, Detre JA, Zaharchuk G. Arterial spin labeling MRI: clinical applications in the brain. J Magn Reson Imaging 2015; 41 (05) 1165-1180
  • 50 Armitage PA, Skipper N, Connolly DJ, Griffiths PD. A qualitative comparison of arterial spin labelling and dynamic susceptibility contrast MRI in 52 children with a range of neurological conditions. Br J Radiol 2017; 90 (1069): 20160495
  • 51 Knutsson L, van Westen D, Petersen ET. , et al. Absolute quantification of cerebral blood flow: correlation between dynamic susceptibility contrast MRI and model-free arterial spin labeling. Magn Reson Imaging 2010; 28 (01) 1-7
  • 52 Khashbat Md D, Abe Md T, Ganbold Md M. , et al. Correlation of 3D arterial spin labeling and multi-parametric dynamic susceptibility contrast perfusion MRI in brain tumors. J Med Invest 2016; 63 (3-4): 175-181
  • 53 Zaharchuk G, Straka M, Marks MP, Albers GW, Moseley ME, Bammer R. Combined arterial spin label and dynamic susceptibility contrast measurement of cerebral blood flow. Magn Reson Med 2010; 63 (06) 1548-1556
  • 54 Mabray MC, Cha S. Advanced MR imaging techniques in daily practice. Neuroimaging Clin N Am 2016; 26 (04) 647-666
  • 55 Abbott DF, Opdam HI, Briellmann RS, Jackson GD. Brief breath holding may confound functional magnetic resonance imaging studies. Hum Brain Mapp 2005; 24 (04) 284-290
  • 56 Kimmerly DS, Morris BL, Floras JS. Apnea-induced cortical BOLD-fMRI and peripheral sympathoneural firing response patterns of awake healthy humans. PLoS One 2013; 8 (12) e82525
  • 57 Kastrup A, Li TQ, Takahashi A, Glover GH, Moseley ME. Functional magnetic resonance imaging of regional cerebral blood oxygenation changes during breath holding. Stroke 1998; 29 (12) 2641-2645
  • 58 Di X, Kannurpatti SS, Rypma B, Biswal BB. Calibrating BOLD fMRI activations with neurovascular and anatomical constraints. Cereb Cortex 2013; 23 (02) 255-263
  • 59 Bright MG, Murphy K. Reliable quantification of BOLD fMRI cerebrovascular reactivity despite poor breath-hold performance. Neuroimage 2013; 83: 559-568
  • 60 Thomason ME, Burrows BE, Gabrieli JD, Glover GH. Breath holding reveals differences in fMRI BOLD signal in children and adults. Neuroimage 2005; 25 (03) 824-837
  • 61 Birn RM, Murphy K, Handwerker DA, Bandettini PA. fMRI in the presence of task-correlated breathing variations. Neuroimage 2009; 47 (03) 1092-1104
  • 62 Pillai JJ, Mikulis DJ. Cerebrovascular reactivity mapping: an evolving standard for clinical functional imaging. AJNR Am J Neuroradiol 2015; 36 (01) 7-13
  • 63 Kumar A, Chandra PS, Sharma BS. , et al. The role of neuronavigation-guided functional MRI and diffusion tensor tractography along with cortical stimulation in patients with eloquent cortex lesions. Br J Neurosurg 2014; 28 (02) 226-233
  • 64 Hall WA, Kim P, Truwit CL. Functional magnetic resonance imaging-guided brain tumor resection. Top Magn Reson Imaging 2009; 19 (04) 205-212
  • 65 Ottenhausen M, Krieg SM, Meyer B, Ringel F. Functional preoperative and intraoperative mapping and monitoring: increasing safety and efficacy in glioma surgery. Neurosurg Focus 2015; 38 (01) E3
  • 66 Dorfer C, Widjaja E, Ochi A, Carter Snead Iii O, Rutka JT. Epilepsy surgery: recent advances in brain mapping, neuroimaging and surgical procedures. J Neurosurg Sci 2015; 59 (02) 141-155
  • 67 Amaro Jr E, Barker GJ. Study design in fMRI: basic principles. Brain Cogn 2006; 60 (03) 220-232
  • 68 Petersen SE, Dubis JW. The mixed block/event-related design. Neuroimage 2012; 62 (02) 1177-1184
  • 69 Williams RJ, McMahon KL, Hocking J, Reutens DC. Comparison of block and event-related experimental designs in diffusion-weighted functional MRI. J Magn Reson Imaging 2014; 40 (02) 367-375
  • 70 Le Bihan D, Karni A. Applications of magnetic resonance imaging to the study of human brain function. Curr Opin Neurobiol 1995; 5 (02) 231-237
  • 71 Yousry I, Naidich TP, Yousry TA. Functional magnetic resonance imaging: factors modulating the cortical activation pattern of the motor system. Neuroimaging Clin N Am 2001; 11 (02) 195-202 , viii
  • 72 Holodny AI, Shevzov-Zebrun N, Brennan N, Peck KK. Motor and sensory mapping. Neurosurg Clin N Am 2011; 22 (02) 207-218 , viii
  • 73 Engström M, Ragnehed M, Lundberg P, Söderfeldt B. Paradigm design of sensory-motor and language tests in clinical fMRI. Neurophysiol Clin 2004; 34 (06) 267-277
  • 74 Pool EM, Rehme AK, Fink GR, Eickhoff SB, Grefkes C. Handedness and effective connectivity of the motor system. Neuroimage 2014; 99: 451-460
  • 75 Chung GH, Han YM, Jeong SH, Jack Jr CR. Functional heterogeneity of the supplementary motor area. AJNR Am J Neuroradiol 2005; 26 (07) 1819-1823
  • 76 Cona G, Semenza C. Supplementary motor area as key structure for domain-general sequence processing: A unified account. Neurosci Biobehav Rev 2017; 72: 28-42
  • 77 Martin E, Joeri P, Loenneker T. , et al. Visual processing in infants and children studied using functional MRI. Pediatr Res 1999; 46 (02) 135-140
  • 78 Lemos J, Pereira D, Castelo-Branco M. Visual cortex plasticity following peripheral damage to the visual system: fMRI evidence. Curr Neurol Neurosci Rep 2016; 16 (10) 89
  • 79 Brown HD, Woodall RL, Kitching RE, Baseler HA, Morland AB. Using magnetic resonance imaging to assess visual deficits: a review. Ophthalmic Physiol Opt 2016; 36 (03) 240-265
  • 80 DeYoe EA, Carman GJ, Bandettini P. , et al. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci U S A 1996; 93 (06) 2382-2386
  • 81 Amaro Jr E, Williams SC, Shergill SS. , et al. Acoustic noise and functional magnetic resonance imaging: current strategies and future prospects. J Magn Reson Imaging 2002; 16 (05) 497-510
  • 82 Patel AM, Cahill LD, Ret J, Schmithorst V, Choo D, Holland S. Functional magnetic resonance imaging of hearing-impaired children under sedation before cochlear implantation. Arch Otolaryngol Head Neck Surg 2007; 133 (07) 677-683
  • 83 Bola Ł, Zimmermann M, Mostowski P. , et al. Task-specific reorganization of the auditory cortex in deaf humans. Proc Natl Acad Sci U S A 2017; 114 (04) E600-E609
  • 84 Schmithorst VJ, Holland SK, Ret J, Duggins A, Arjmand E, Greinwald J. Cortical reorganization in children with unilateral sensorineural hearing loss. Neuroreport 2005; 16 (05) 463-467
  • 85 Baxendale S. The Wada test. Curr Opin Neurol 2009; 22 (02) 185-189
  • 86 Dym RJ, Burns J, Freeman K, Lipton ML. Is functional MR imaging assessment of hemispheric language dominance as good as the Wada test?: a meta-analysis. Radiology 2011; 261 (02) 446-455
  • 87 Abou-Khalil B. Methods for determination of language dominance: the Wada test and proposed noninvasive alternatives. Curr Neurol Neurosci Rep 2007; 7 (06) 483-490
  • 88 Máté A, Lidzba K, Hauser TK, Staudt M, Wilke M. A “one size fits all” approach to language fMRI: increasing specificity and applicability by adding a self-paced component. Exp Brain Res 2016; 234 (03) 673-684
  • 89 Ebner K, Lidzba K, Hauser TK, Wilke M. Assessing language and visuospatial functions with one task: a “dual use” approach to performing fMRI in children. Neuroimage 2011; 58 (03) 923-929
  • 90 Wilke M, Lidzba K, Staudt M, Buchenau K, Grodd W, Krägeloh-Mann I. An fMRI task battery for assessing hemispheric language dominance in children. Neuroimage 2006; 32 (01) 400-410
  • 91 O'Shaughnessy ES, Berl MM, Moore EN, Gaillard WD. Pediatric functional magnetic resonance imaging (fMRI): issues and applications. J Child Neurol 2008; 23 (07) 791-801
  • 92 Gartus A, Foki T, Geissler A, Beisteiner R. Improvement of clinical language localization with an overt semantic and syntactic language functional MR imaging paradigm. Am J Neuroradiol 2009; 30 (10) 1977-1985
  • 93 Wilke M, Pieper T, Lindner K, Dushe T, Holthausen H, Krägeloh-Mann I. Why one task is not enough: functional MRI for atypical language organization in two children. Eur J Paediatr Neurol 2010; 14 (06) 474-478
  • 94 Knecht S, Dräger B, Deppe M. , et al. Handedness and hemispheric language dominance in healthy humans. Brain 2000; 123 (Pt 12): 2512-2518
  • 95 Mazoyer B, Zago L, Jobard G. , et al. Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness. PLoS One 2014; 9 (06) e101165
  • 96 Friederici AD, Brauer J, Lohmann G. Maturation of the language network: from inter- to intrahemispheric connectivities. PLoS One 2011; 6 (06) e20726
  • 97 Edlin JM, Leppanen ML, Fain RJ, Hackländer RP, Hanaver-Torrez SD, Lyle KB. On the use (and misuse?) of the Edinburgh Handedness Inventory. Brain Cogn 2015; 94: 44-51
  • 98 Vingerhoets G, Van Borsel J, Tesink C. , et al. Multilingualism: an fMRI study. Neuroimage 2003; 20 (04) 2181-2196
  • 99 Kovelman I, Baker SA, Petitto LA. Bilingual and monolingual brains compared: a functional magnetic resonance imaging investigation of syntactic processing and a possible “neural signature” of bilingualism. J Cogn Neurosci 2008; 20 (01) 153-169
  • 100 Andrews E, Frigau L, Voyvodic-Casabo C, Voyvodic J, Wright J. Multilingualism and fMRI: longitudinal study of second language acquisition. Brain Sci 2013; 3 (02) 849-876
  • 101 Pillai JJ, Allison JD, Sethuraman S. , et al. Functional MR imaging study of language-related differences in bilingual cerebellar activation. AJNR Am J Neuroradiol 2004; 25 (04) 523-532
  • 102 Pillai JJ, Araque JM, Allison JD. , et al. Functional MRI study of semantic and phonological language processing in bilingual subjects: preliminary findings. Neuroimage 2003; 19 (03) 565-576
  • 103 Brauer J, Anwander A, Perani D, Friederici AD. Dorsal and ventral pathways in language development. Brain Lang 2013; 127 (02) 289-295
  • 104 Gaillard WD, Hertz-Pannier L, Mott SH, Barnett AS, LeBihan D, Theodore WH. Functional anatomy of cognitive development: fMRI of verbal fluency in children and adults. Neurology 2000; 54 (01) 180-185
  • 105 Holland SK, Vannest J, Mecoli M. , et al. Functional MRI of language lateralization during development in children. Int J Audiol 2007; 46 (09) 533-551
  • 106 Vannest J, Karunanayaka PR, Schmithorst VJ, Szaflarski JP, Holland SK. Language networks in children: evidence from functional MRI studies. AJR Am J Roentgenol 2009; 192 (05) 1190-1196
  • 107 Sachs BC, Gaillard WD. Organization of language networks in children: functional magnetic resonance imaging studies. Curr Neurol Neurosci Rep 2003; 3 (02) 157-162
  • 108 Everts R, Lidzba K, Wilke M. , et al. Strengthening of laterality of verbal and visuospatial functions during childhood and adolescence. Hum Brain Mapp 2009; 30 (02) 473-483
  • 109 Lidzba K, Schwilling E, Grodd W, Krägeloh-Mann I, Wilke M. Language comprehension vs. language production: age effects on fMRI activation. Brain Lang 2011; 119 (01) 6-15
  • 110 Wise RJ. Language systems in normal and aphasic human subjects: functional imaging studies and inferences from animal studies. Br Med Bull 2003; 65: 95-119
  • 111 Chang EF, Raygor KP, Berger MS. Contemporary model of language organization: an overview for neurosurgeons. J Neurosurg 2015; 122 (02) 250-261
  • 112 Ardila A, Bernal B, Rosselli M. How localized are language brain areas? A review of Brodmann areas involvement in oral language. Arch Clin Neuropsychol 2016; 31 (01) 112-122
  • 113 Middlebrooks EH, Yagmurlu K, Szaflarski JP, Rahman M, Bozkurt B. A contemporary framework of language processing in the human brain in the context of preoperative and intraoperative language mapping. Neuroradiology 2017; 59 (01) 69-87
  • 114 Zhou W, Wang X, Xia Z, Bi Y, Li P, Shu H. Neural mechanisms of dorsal and ventral visual regions during text reading. Front Psychol 2016; 7: 1399
  • 115 Fiez JA, Petersen SE. Neuroimaging studies of word reading. Proc Natl Acad Sci U S A 1998; 95 (03) 914-921
  • 116 Tremblay P, Dick AS. Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang 2016; 162: 60-71
  • 117 Hagoort P. Nodes and networks in the neural architecture for language: Broca's region and beyond. Curr Opin Neurobiol 2014; 28: 136-141
  • 118 Dick AS, Bernal B, Tremblay P. The language connectome: new pathways, new concepts. Neuroscientist 2014; 20 (05) 453-467
  • 119 Barbey AK, Koenigs M, Grafman J. Dorsolateral prefrontal contributions to human working memory. Cortex 2013; 49 (05) 1195-1205
  • 120 Barbey AK, Colom R, Grafman J. Dorsolateral prefrontal contributions to human intelligence. Neuropsychologia 2013; 51 (07) 1361-1369
  • 121 Pochon JB, Levy R, Poline JB. , et al. The role of dorsolateral prefrontal cortex in the preparation of forthcoming actions: an fMRI study. Cereb Cortex 2001; 11 (03) 260-266
  • 122 Maillet D, Rajah MN. Age-related differences in brain activity in the subsequent memory paradigm: a meta-analysis. Neurosci Biobehav Rev 2014; 45: 246-257
  • 123 Dickerson BC. Functional MRI in the early detection of dementias. Rev Neurol (Paris) 2006; 162 (10) 941-944
  • 124 O'Donnell LJ, Westin CF. An introduction to diffusion tensor image analysis. Neurosurg Clin N Am 2011; 22 (02) 185-196 , viii
  • 125 Chung HW, Chou MC, Chen CY. Principles and limitations of computational algorithms in clinical diffusion tensor MR tractography. AJNR Am J Neuroradiol 2011; 32 (01) 3-13
  • 126 Cabeen RP, Bastin ME, Laidlaw DH. A Comparative evaluation of voxel-based spatial mapping in diffusion tensor imaging. Neuroimage 2017; 146: 100-112
  • 127 Abhinav K, Yeh FC, Pathak S. , et al. Advanced diffusion MRI fiber tracking in neurosurgical and neurodegenerative disorders and neuroanatomical studies: A review. Biochim Biophys Acta 2014; 1842 (11) 2286-2297
  • 128 Jbabdi S, Sotiropoulos SN, Savio AM, Graña M, Behrens TE. Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems. Magn Reson Med 2012; 68 (06) 1846-1855
  • 129 Plaza MJ, Borja MJ, Altman N, Saigal G. Conventional and advanced MRI features of pediatric intracranial tumors: posterior fossa and suprasellar tumors. Am J Roentgenol 2013; 200 (05) 1115-1124
  • 130 Borja MJ, Plaza MJ, Altman N, Saigal G. Conventional and advanced MRI features of pediatric intracranial tumors: supratentorial tumors. AJR Am J Roentgenol 2013; 200 (05) W483-503
  • 131 Karimi S, Petrovich N, Peck KK, Hou B, Holodny A. Advanced MR: techniques in brain tumor imaging. Appl Radiol 2006; 35: 9
  • 132 Poussaint TY, Rodriguez D. Advanced neuroimaging of pediatric brain tumors: MR diffusion, MR perfusion, and MR spectroscopy. Neuroimaging Clin N Am 2006; 16 (01) 169-192 , ix
  • 133 Lequin M, Hendrikse J. Advanced MR imaging in pediatric brain tumors, clinical applications. Neuroimaging Clin N Am 2017; 27 (01) 167-190
  • 134 Garel C, Chantrel E, Brisse H. , et al. Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. AJNR Am J Neuroradiol 2001; 22 (01) 184-189
  • 135 van der Knaap MS, van Wezel-Meijler G, Barth PG, Barkhof F, Adèr HJ, Valk J. Normal gyration and sulcation in preterm and term neonates: appearance on MR images. Radiology 1996; 200 (02) 389-396
  • 136 Martin E, Kikinis R, Zuerrer M. , et al. Developmental stages of human brain: an MR study. J Comput Assist Tomogr 1988; 12 (06) 917-922
  • 137 Counsell SJ, Maalouf EF, Fletcher AM. , et al. MR imaging assessment of myelination in the very preterm brain. Am J Neuroradiol 2002; 23 (05) 872-881
  • 138 Welker KM, Patton A. Assessment of normal myelination with magnetic resonance imaging. Semin Neurol 2012; 32 (01) 15-28
  • 139 Parazzini C, Baldoli C, Scotti G, Triulzi F. Terminal zones of myelination: MR evaluation of children aged 20-40 months. Am J Neuroradiol 2002; 23 (10) 1669-1673
  • 140 Arshad M, Stanley JA, Raz N. Adult age differences in subcortical myelin content are consistent with protracted myelination and unrelated to diffusion tensor imaging indices. Neuroimage 2016; 143: 26-39
  • 141 Thomason ME, Scheinost D, Manning JH. , et al. Weak functional connectivity in the human fetal brain prior to preterm birth. Sci Rep 2017; 7: 39286
  • 142 Fransson P, Aden U, Blennow M, Lagercrantz H. The functional architecture of the infant brain as revealed by resting-state fMRI. Cereb Cortex 2011; 21 (01) 145-154
  • 143 Lee W, Morgan BR, Shroff MM, Sled JG, Taylor MJ. The development of regional functional connectivity in preterm infants into early childhood. Neuroradiology 2013; 55 (Suppl. 02) 105-111
  • 144 Cao M, Wang JH, Dai ZJ. , et al. Topological organization of the human brain functional connectome across the lifespan. Dev Cogn Neurosci 2014; 7: 76-93
  • 145 Stevens MC. The contributions of resting state and task-based functional connectivity studies to our understanding of adolescent brain network maturation. Neurosci Biobehav Rev 2016; 70: 13-32
  • 146 Hertz-Pannier L. Brain plasticity during development: physiological bases and functional MRI approach [in French]. J Neuroradiol 1999; 26 (1, Suppl): S66-S74
  • 147 Marcar VL. Is adaptive neuronal plasticity an epiphenomenon of the BOLD-signal?. Restor Neurol Neurosci 2009; 27 (05) 567-578
  • 148 Vértes PE, Bullmore ET. Annual research review: Growth connectomics--the organization and reorganization of brain networks during normal and abnormal development. J Child Psychol Psychiatry 2015; 56 (03) 299-320
  • 149 Staudt M, Grodd W, Gerloff C, Erb M, Stitz J, Krägeloh-Mann I. Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study. Brain 2002; 125 (Pt 10): 2222-2237
  • 150 Walther M, Juenger H, Kuhnke N. , et al. Motor cortex plasticity in ischemic perinatal stroke: a transcranial magnetic stimulation and functional MRI study. Pediatr Neurol 2009; 41 (03) 171-178
  • 151 Dijkhuizen RM, Zaharchuk G, Otte WM. Assessment and modulation of resting-state neural networks after stroke. Curr Opin Neurol 2014; 27 (06) 637-643
  • 152 Briellmann RS, Abbott DF, Caflisch U, Archer JS, Jackson GD. Brain reorganisation in cerebral palsy: a high-field functional MRI study. Neuropediatrics 2002; 33 (03) 162-165
  • 153 Staudt M, Ticini LF, Grodd W, Krägeloh-Mann I, Karnath HO. Functional topography of early periventricular brain lesions in relation to cytoarchitectonic probabilistic maps. Brain Lang 2008; 106 (03) 177-183
  • 154 Hadac J, Brozová K, Tintera J, Krsek P. Language lateralization in children with pre- and postnatal epileptogenic lesions of the left hemisphere: an fMRI study. Epileptic Disord 2007; 9 (Suppl. 01) S19-S27
  • 155 Korman B, Bernal B, Duchowny M. , et al. Atypical propositional language organization in prenatal and early-acquired temporal lobe lesions. J Child Neurol 2010; 25 (08) 985-993
  • 156 Hertz-Pannier L, Chiron C, Jambaqué I. , et al. Late plasticity for language in a child's non-dominant hemisphere: a pre- and post-surgery fMRI study. Brain 2002; 125 (Pt 2): 361-372
  • 157 Juenger H, Linder-Lucht M, Walther M, Berweck S, Mall V, Staudt M. Cortical neuromodulation by constraint-induced movement therapy in congenital hemiparesis: an FMRI study. Neuropediatrics 2007; 38 (03) 130-136
  • 158 Juenger H, Kuhnke N, Braun C. , et al. Two types of exercise-induced neuroplasticity in congenital hemiparesis: a transcranial magnetic stimulation, functional MRI, and magnetoencephalography study. Dev Med Child Neurol 2013; 55 (10) 941-951
  • 159 Tzourio-Mazoyer N, Perrone-Bertolotti M, Jobard G, Mazoyer B, Baciu M. Multi-factorial modulation of hemispheric specialization and plasticity for language in healthy and pathological conditions: A review. Cortex 2017; 86: 314-339
  • 160 Holloway V, Gadian DG, Vargha-Khadem F, Porter DA, Boyd SG, Connelly A. The reorganization of sensorimotor function in children after hemispherectomy. A functional MRI and somatosensory evoked potential study. Brain 2000; 123 (Pt 12): 2432-2444
  • 161 Levin HS. Neuroplasticity following non-penetrating traumatic brain injury. Brain Inj 2003; 17 (08) 665-674
  • 162 Wilde EA, , Hunter, Bigler ED. Pediatric traumatic brain injury: neuroimaging and neurorehabilitation outcome. NeuroRehabilitation 2012; 31 (03) 245-260
  • 163 Tomberg T, Braschinsky M, Rannikmäe K. , et al. Functional MRI of the cortical sensorimotor system in patients with hereditary spastic paraplegia. Spinal Cord 2012; 50 (12) 885-890
  • 164 Wilke M, Pieper T, Lindner K. , et al. Clinical functional MRI of the language domain in children with epilepsy. Hum Brain Mapp 2011; 32 (11) 1882-1893
  • 165 Till C, Ghassemi R, Aubert-Broche B. , et al. MRI correlates of cognitive impairment in childhood-onset multiple sclerosis. Neuropsychology 2011; 25 (03) 319-332
  • 166 Tuntiyatorn L, Wuttiplakorn L, Laohawiriyakamol K. Plasticity of the motor cortex in patients with brain tumors and arteriovenous malformations: a functional MR study. J Med Assoc Thai 2011; 94 (09) 1134-1140
  • 167 Deng X, Zhang Y, Xu L. , et al. Comparison of language cortex reorganization patterns between cerebral arteriovenous malformations and gliomas: a functional MRI study. J Neurosurg 2015; 122 (05) 996-1003
  • 168 Deng X, Xu L, Zhang Y. , et al. Difference of language cortex reorganization between cerebral arteriovenous malformations, cavernous malformations, and gliomas: a functional MRI study. Neurosurg Rev 2016; 39 (02) 241-249 , discussion 249
  • 169 Lum C, McAndrews MP, Holodny AI. , et al. Investigating agenesis of the corpus callosum using functional MRI: a study examining interhemispheric coordination of motor control. J Neuroimaging 2011; 21 (01) 65-68
  • 170 Iacoboni M, Ptito A, Weekes NY, Zaidel E. Parallel visuomotor processing in the split brain: cortico-subcortical interactions. Brain 2000; 123 (Pt 4): 759-769
  • 171 Son SM, Kwon YH, Jang SH. Motor function reorganization lateral to congenital brain lesion: a functional MRI study. NeuroRehabilitation 2010; 26 (02) 173-176
  • 172 Maegaki Y, Seki A, Suzaki I. , et al. Congenital mirror movement: a study of functional MRI and transcranial magnetic stimulation. Dev Med Child Neurol 2002; 44 (12) 838-843
  • 173 Liu GT, Hunter J, Miki A, Fletcher DW, Brown L, Haselgrove JC. Functional MRI in children with congenital structural abnormalities of the occipital cortex. Neuropediatrics 2000; 31 (01) 13-15
  • 174 Burneo JG, Bartha R, Gati J, Parrent A, Steven DA. 4-T fMRI of the motor and sensory cortices in patients with polymicrogyria and epilepsy. Clin Neurol Neurosurg 2014; 122: 29-33
  • 175 Staudt M, Pieper T, Grodd W, Winkler P, Holthausen H, Krägeloh-Mann I. Functional MRI in a 6-year-old boy with unilateral cortical malformation: concordant representation of both hands in the unaffected hemisphere. Neuropediatrics 2001; 32 (03) 159-161
  • 176 Barba C, Montanaro D, Cincotta M, Giovannelli F, Guerrini R. An integrated fMRI, SEPs and MEPs approach for assessing functional organization in the malformed sensorimotor cortex. Epilepsy Res 2010; 89 (01) 66-71
  • 177 Nikolova S, Bartha R, Parrent AG, Steven DA, Diosy D, Burneo JG. Functional MRI of neuronal activation in epilepsy patients with malformations of cortical development. Epilepsy Res 2015; 116: 1-7
  • 178 Archer JS, Abbott DF, Masterton RA, Palmer SM, Jackson GD. Functional MRI interactions between dysplastic nodules and overlying cortex in periventricular nodular heterotopia. Epilepsy Behav 2010; 19 (04) 631-634
  • 179 Villani F, Vitali P, Scaioli V. , et al. Subcortical nodular heterotopia: a functional MRI and somatosensory evoked potentials study. Neurol Sci 2004; 25 (04) 225-229
  • 180 Keene DL, Olds J, Logan WJ. Functional MRI study of verbal fluency in a patient with subcortical laminar heterotopia. Can J Neurol Sci 2004; 31 (02) 261-264
  • 181 Marinelli L, Bonzano L, Saitta L, Trompetto C, Abbruzzese G. Continuous involuntary hand movements and schizencephaly: epilepsia partialis continua or dystonia?. Neurol Sci 2012; 33 (02) 335-338
  • 182 Parisi MA, Pinter JD, Glass IA. , et al. Cerebral and cerebellar motor activation abnormalities in a subject with Joubert syndrome: functional magnetic resonance imaging (MRI) study. J Child Neurol 2004; 19 (03) 214-218
  • 183 Alkadhi H, Crelier GR, Imhof HG, Kollias SS. Somatomotor functional MRI in a large congenital arachnoid cyst. Neuroradiology 2003; 45 (03) 153-156
  • 184 Mathur AM, Neil JJ, Inder TE. Understanding brain injury and neurodevelopmental disabilities in the preterm infant: the evolving role of advanced magnetic resonance imaging. Semin Perinatol 2010; 34 (01) 57-66
  • 185 Smyser CD, Neil JJ. Use of resting-state functional MRI to study brain development and injury in neonates. Semin Perinatol 2015; 39 (02) 130-140
  • 186 Gu S, Satterthwaite TD, Medaglia JD. , et al. Emergence of system roles in normative neurodevelopment. Proc Natl Acad Sci U S A 2015; 112 (44) 13681-13686
  • 187 Seyffert M, Silva R. fMRI in pediatric neurodevelopmental disorders. Curr Pediatr Rev 2005; 1: 17-24
  • 188 Gothelf D, Furfaro JA, Penniman LC, Glover GH, Reiss AL. The contribution of novel brain imaging techniques to understanding the neurobiology of mental retardation and developmental disabilities. Ment Retard Dev Disabil Res Rev 2005; 11 (04) 331-339
  • 189 Williams SE, Rivera S, Reiss AL. Functional MRI of working memory in paediatric head injury. Brain Inj 2005; 19 (07) 549-553
  • 190 Caeyenberghs K, Verhelst H, Clemente A, Wilson PH. Mapping the functional connectome in traumatic brain injury: What can graph metrics tell us?. Neuroimage 2016; DOI: 10.1016/j.neuroimage.2016.12.003.
  • 191 McClure EB, Adler A, Monk CS. , et al. fMRI predictors of treatment outcome in pediatric anxiety disorders. Psychopharmacology (Berl) 2007; 191 (01) 97-105
  • 192 Forbes EE, Christopher May J, Siegle GJ. , et al. Reward-related decision-making in pediatric major depressive disorder: an fMRI study. J Child Psychol Psychiatry 2006; 47 (10) 1031-1040
  • 193 Rahko JS, Vuontela VA, Carlson S. , et al. Attention and working memory in adolescents with autism spectrum disorder: a functional MRI study. Child Psychiatry Hum Dev 2016; 47 (03) 503-517
  • 194 Jolles DD, Kleibeuker SW, Rombouts SA, Crone EA. Developmental differences in prefrontal activation during working memory maintenance and manipulation for different memory loads. Dev Sci 2011; 14 (04) 713-724
  • 195 Coleman MR, Bekinschtein T, Monti MM, Owen AM, Pickard JD. A multimodal approach to the assessment of patients with disorders of consciousness. Prog Brain Res 2009; 177: 231-248
  • 196 Hirsch J. Functional neuroimaging during altered states of consciousness: how and what do we measure?. Prog Brain Res 2005; 150: 25-43
  • 197 Taylor MJ, Donner EJ, Pang EW. fMRI and MEG in the study of typical and atypical cognitive development. Neurophysiol Clin 2012; 42 (1-2): 19-25