Semin Musculoskelet Radiol 2018; 22(01): 066-080
DOI: 10.1055/s-0037-1608005
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Skeletal Dysplasias: Radiologic Approach with Common and Notable Entities

Anh-Vu Ngo
1   Department of Radiology, Seattle Children's Hospital, Seattle, Washington
,
Mahesh Thapa
1   Department of Radiology, Seattle Children's Hospital, Seattle, Washington
,
Jeffrey Otjen
1   Department of Radiology, Seattle Children's Hospital, Seattle, Washington
,
Shawn E. Kamps
1   Department of Radiology, Seattle Children's Hospital, Seattle, Washington
› Author Affiliations
Further Information

Publication History

Publication Date:
06 February 2018 (online)

Abstract

Skeletal dysplasia is a heterogeneous group of abnormalities affecting growth and development of bone and cartilage characterized by disproportionate shortening of the limbs and/or spine. A systematic radiographic approach combined with pertinent clinical details can help guide specific genetic testing and treatment. We provide a discussion and examples of a few common and notable skeletal dysplasias to help familiarize general, pediatric, and musculoskeletal radiologists who do not commonly encounter children with these entities in their daily practices.

 
  • References

  • 1 Orioli IM, Castilla EE, Barbosa-Neto JG. The birth prevalence rates for the skeletal dysplasias. J Med Genet 1986; 23 (04) 328-332
  • 2 Warman ML, Cormier-Daire V, Hall C. , et al. Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A 2011; 155A (05) 943-968
  • 3 Alanay Y, Lachman RS. A review of the principles of radiological assessment of skeletal dysplasias. J Clin Res Pediatr Endocrinol 2011; 3 (04) 163-178
  • 4 Krakow D, Rimoin DL. The skeletal dysplasias. Genet Med 2010; 12 (06) 327-341
  • 5 Lachman R. Taybi and Lachman's Radiology of Syndromes, Metabolic Disorders and Skeletal Dysplasias. 5th ed. Philadelphia, PA: Elsevier; 2007
  • 6 Dwek J, Lachman R. Skeletal Dysplasias and Selected Chromosomal Disorders. In: Cooley B. , ed. Caffey's Pediatric Diagnostic Imaging. 12th ed. Philadelphia, PA: Elsevier; 2013: 1370-1413
  • 7 Swarr DT, Sutton VR. Skeletal dysplasias in the newborn: diagnostic evaluation and developmental genetics. NeoReviews 2010; 11 (06) e290-e305
  • 8 Fagen KE, Blask AR, Rubio EI, Bulas DI. Achondroplasia in the premature infant: an elusive diagnosis in the neonatal intensive care unit. AJP Rep 2017; 7 (01) e8-e12
  • 9 Entry Online Mendelian Inheritance in Man (OMIM). # 100800 Achondroplasia (ACH). Available at: https://www.omim.org/entry/100800 . Accessed July 7, 2017
  • 10 Panda A, Gamanagatti S, Jana M, Gupta AK. Skeletal dysplasias: a radiographic approach and review of common non-lethal skeletal dysplasias. World J Radiol 2014; 6 (10) 808-825
  • 11 Stensvold K, Ek J, Hovland AR. An infant with thanatophoric dwarfism surviving 169 days. Clin Genet 1986; 29 (02) 157-159
  • 12 Tonoki H. A boy with thanatophoric dysplasia surviving 212 days. Clin Genet 1987; 32 (06) 415-416
  • 13 Jeune M, Beraud C, Carron R. Dystrophie thoracique asphyxiante de caractère familial. Arch Fr Pediatr 1955; 12 (08) 886-891
  • 14 de Vries J, Yntema JL, van Die CE, Crama N, Cornelissen EAM, Hamel BCJ. Jeune syndrome: description of 13 cases and a proposal for follow-up protocol. Eur J Pediatr 2010; 169 (01) 77-88
  • 15 Clarke LA, Hollak CEM. The clinical spectrum and pathophysiology of skeletal complications in lysosomal storage disorders. Best Pract Res Clin Endocrinol Metab 2015; 29 (02) 219-235
  • 16 Parker EI, Xing M, Moreno-De-Luca A, Harmouche E, Terk MR. Radiological and clinical characterization of the lysosomal storage disorders: non-lipid disorders. Br J Radiol 2014; 87 (1033): 20130467
  • 17 Kocakoc E, Kiris A. Achondrogenesis type II with normally developed extremities: a case report. Prenat Diagn 2002; 22 (07) 594-597
  • 18 Briggs MD, Wright MJ. Pseudoachondroplasia. In: Pagon RA, Adam MP, Ardinger HH. , et al., eds. GeneReviews. Seattle, WA: University of Washington; 1993. . Available at: http://www.ncbi.nlm.nih.gov/books/NBK1487/ . Accessed May 25, 2017
  • 19 Otto F, Kanegane H, Mundlos S. Mutations in the RUNX2 gene in patients with cleidocranial dysplasia. Hum Mutat 2002; 19 (03) 209-216 Doi: 10.1002/humu.10043
  • 20 Karagüzel G, Aktürk FA, Okur E, Gümele HR, Gedik Y, Ökten A. Cleidocranial dysplasia: a case report. J Clin Res Pediatr Endocrinol 2010; 2 (03) 134-136
  • 21 Schwartz DT, Alpert M. The malignant transformation of fibrous dysplasia. Am J Med Sci 1964; 247: 1-20
  • 22 Kransdorf MJ, Moser Jr RP, Gilkey FW. Fibrous dysplasia. Radiographics 1990; 10 (03) 519-537
  • 23 Resnick D. Diagnosis of Bone and Joint Disorders. 4th ed. Philadelphia, PA: Saunders; 2002
  • 24 Thomsen MD, Rejnmark L. Clinical and radiological observations in a case series of 26 patients with fibrous dysplasia. Calcif Tissue Int 2014; 94 (04) 384-395
  • 25 Jee WH, Choi KH, Choe BY, Park JM, Shinn KS. Fibrous dysplasia: MR imaging characteristics with radiopathologic correlation. AJR Am J Roentgenol 1996; 167 (06) 1523-1527
  • 26 Schmale GA, Conrad III EU, Raskind WH. The natural history of hereditary multiple exostoses. J Bone Joint Surg Am 1994; 76 (07) 986-992
  • 27 Pannier S, Legeai-Mallet L. Hereditary multiple exostoses and enchondromatosis. Best Pract Res Clin Rheumatol 2008; 22 (01) 45-54
  • 28 Sonne-Holm E, Wong C, Sonne-Holm S. Multiple cartilaginous exostoses and development of chondrosarcomas—a systematic review. Dan Med J 2014; 61 (09) A4895
  • 29 Muthusamy S, Conway SA, Temple HT. Five polyostotic conditions that general orthopedic surgeons should recognize (or should not miss). Orthop Clin North Am 2014; 45 (03) 417-429
  • 30 Kwee RM, Fayad LM, Fishman EK, Fritz J. Multidetector computed tomography in the evaluation of hereditary multiple exostoses. Eur J Radiol 2016; 85 (02) 383-391
  • 31 Silve C, Jüppner H. Ollier disease. Orphanet J Rare Dis 2006; 1 (01) 37
  • 32 Wynne-Davies R, Gormley J. The prevalence of skeletal dysplasias. An estimate of their minimum frequency and the number of patients requiring orthopaedic care. J Bone Joint Surg Br 1985; 67 (01) 133-137
  • 33 Herget GW, Strohm P, Rottenburger C. , et al. Insights into enchondroma, enchondromatosis and the risk of secondary chondrosarcoma. Review of the literature with an emphasis on the clinical behaviour, radiology, malignant transformation and the follow up. Neoplasma 2014; 61 (04) 365-378
  • 34 Kumar A, Jain VK, Bharadwaj M, Arya RK. Ollier disease: pathogenesis, diagnosis, and management. Orthopedics 2015; 38 (06) e497-e506
  • 35 Fotiadou AN, Calleja M, Hargunani R, Keen R. Skeletal manifestations of osteogenesis imperfecta. Semin Musculoskelet Radiol 2016; 20 (03) 279-286
  • 36 Sillence DO, Rimoin DL, Danks DM. Clinical variability in osteogenesis imperfecta—variable expressivity or genetic heterogeneity. Birth Defects Orig Artic Ser 1979; 15 (5B): 113-129
  • 37 Trejo P, Rauch F. Osteogenesis imperfecta in children and adolescents-new developments in diagnosis and treatment. Osteoporos Int 2016; 27 (12) 3427-3437
  • 38 Kang H, Aryal A C S, Marini JC. Osteogenesis imperfecta: new genes reveal novel mechanisms in bone dysplasia. Transl Res 2017; 181: 27-48
  • 39 Rohrbach M, Giunta C. Recessive osteogenesis imperfecta: clinical, radiological, and molecular findings. Am J Med Genet C Semin Med Genet 2012; 160C (03) 175-189
  • 40 Forlino A, Marini JC. Osteogenesis imperfecta. Lancet 2016; 387 (10028): 1657-1671
  • 41 Dwan K, Phillipi CA, Steiner RD, Basel D. Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst Rev 2014; 7: CD005088
  • 42 Marr C, Seasman A, Bishop N. Managing the patient with osteogenesis imperfecta: a multidisciplinary approach. J Multidiscip Healthc 2017; 10: 145-155