Synlett 2018; 29(07): 949-953
DOI: 10.1055/s-0037-1609151
letter
© Georg Thieme Verlag Stuttgart · New York

The Application of Vinamidinium Salt to the Synthesis of 3-Chloro-α-carbolines

Shaixiao Tian
a   Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. of China   Email: gyxu@hunnu.edu.cn
,
Yu Mao
a   Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. of China   Email: gyxu@hunnu.edu.cn
,
Yongjun Jiang
b   School of Biotechnology and Chemical Engineering, Institute of Technology, Zhejiang University, Ningbo, P. R. of China
,
Guangyu Xu*
a   Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. of China   Email: gyxu@hunnu.edu.cn
› Author Affiliations
This work was supported by Opening Fund of Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University (KLCBTCMR201802), and Natural Science Foundation of Zhejiang Province (LY14H300004).
Further Information

Publication History

Received: 19 November 2017

Accepted after revision: 18 December 2017

Publication Date:
26 February 2018 (online)


Abstract

A convenient synthesis of 3-chloro-α-carbolines by the condensation of vinamidinium salt with 2-indolinones via two steps is reported. This protocol has the advantages of readily available starting materials, high yields and easy workup.

Supporting Information

 
  • References and Notes

  • 1 Peczynska-Czoch W. Pognan F. Kaczmarek L. Boratynski J. J. Med. Chem. 1994; 37: 3503
  • 2 Okamoto T. Akase T. Izumi T. Inaba S. Yamamoto H. JP 7220196, 1972 ; Chem. Abstr. 1972, 77, 152142.
  • 3 Winters G. Mola ND. DE 2442513, 1975 ; Chem. Abstr. 1975, 82, 156255
  • 4 Zhang X. He Q. Xiang H. Song S. Miao Z. Yang C. Org. Biomol. Chem. 2014; 12: 355
  • 5 Bolton D. Forbes IT. Hayward CJ. Piper DC. Thomas DR. Thompson M. Upton N. Bioorg. Med. Chem. Lett. 1993; 3: 1941
  • 6 Jaromin A. Kozubek A. Suchoszek-Lukaniuk K. Malicka-Blaszkiewicz M. Peczynska-Czoch W. Kaczmarek L. Drug Delivery 2008; 15: 49
    • 7a Lawson W. Perkin WH. Robinson R. J. Chem. Soc., Trans. 1924; 125: 626
    • 7b Freak RH. Robinson R. J. Chem. Soc. 1938; 2013
    • 7c Stephenson L. Warburton WK. J. Chem. Soc. C 1970; 1355
    • 7d Mehta LK. Parrick J. Payne F. J. Chem. Soc., Perkin Trans. 1 1993; 1261
    • 7e Peczyńska-Czoch W. Pognan F. Kaczmarek Ł. Boratyński J. J. Med. Chem. 1994; 37: 3503
    • 7f Mohamed MB. Parrick J. J. Chem. Res., Miniprint 1980; 0577
    • 8a Chavan NL. Nayak SK. Kusurkar RS. Tetrahedron 2010; 66: 1827
    • 8b Ma Z. Ni F. Woo GH. C. Lo S. Philip MR. Schaus SE. Snyder JK. Beilstein J. Org. Chem. 2012; 8: 829
  • 9 Basavaiah D. Reddy DM. Org. Biomol. Chem. 2012; 10: 8774
    • 10a Kumar AS. Rao PV. A. Nagarajan R. Org. Biomol. Chem. 2012; 10: 5084
    • 10b Markey SJ. Lewis W. Moody CJ. Org. Lett. 2013; 15: 6306
    • 10c Kumar AS. Nagarajan R. Org. Lett. 2011; 13: 1398
    • 11a Ghahremanzadeh R. Ahadi S. Bazgir A. Tetrahedron Lett. 2009; 50: 7379
    • 11b Gupta S. Kumar B. Kundu B. J. Org. Chem. 2011; 76: 10154
    • 11c Sharma SK. Gupta S. Saifuddin M. Mandadapu AK. Agarwal PK. Gauniyal HM. Kundu B. Tetrahedron Lett. 2011; 52: 65
    • 12a Rocca P. Marsais F. Godard A. Queguiner G. Tetrahedron 1993; 49: 49
    • 12b Aubriot S. Nicolle E. Lattier M. Morel C. Cao W. Daniel KW. Collins S. Leclerc G. Faure P. Bioorg. Med. Chem. Lett. 2002; 12: 209
    • 12c Hung TQ. Dang TT. Janke J. Villinger A. Langer P. Org. Biomol. Chem. 2015; 13: 1375
    • 12d Dhara S. Singha R. Ahmed A. Mandal H. Ghosh M. Nuree Y. Ray JK. RSC Adv. 2014; 4: 45163
    • 12e Sera M. Mizufune H. Ueda T. Mineno M. Zanka A. Tetrahedron 2017; 73: 5946
  • 14 Wadsworth AD. Naysmith BJ. Brimble MA. Eur. J. Med. Chem. 2015; 97: 816
  • 15 Schneider C. Goyard D. Gueyrard D. Joseph B. Goekjian PG. Eur. J. Org. Chem. 2010; 6665
  • 16 Routier J. Spangenberg T. WO 2014108168, 2014 ; Chem. Abstr. 2014, 161, 232181
  • 17 Gambacorti Passerini C. Mologni L. Scapozza L. Ahmed S. Goekjian PG. Gueyrard D. Popowycz F. Joseph B. Schneider C. Garcia P. WO 2010025872, 2010; Chem. Abstr. 2010, 152, 335176
  • 18 Schneider C. Gueyrard D. Joseph B. Goekjian PG. Tetrahedron 2009; 65: 5427
  • 19 Mizuno M. Mizufune H. Sera M. Mineno M. Ueda T. WO 2008016184, 2008 ; Chem. Abstr. 2008, 148, 239178
  • 20 Vera-Luque P. Alajarín R. Alvarez-Builla J. Vaquero JJ. Org. Lett. 2006; 8: 415
  • 21 Lloyd D. Hamish M. Angew. Chem., Int. Ed. Engl. 1976; 15: 459
  • 22 Coverdale HA. Hsung RP. Chemtracts 2003; 16: 238
  • 23 Mao Y. Tian S. Zhang W. Xu G. Chin. J. Org. Chem. 2016; 36: 700
  • 24 D'Souza FP. Crasto AM. Gharpure M. Naykodi SB. WO 2011158250, 2011 ; Chem. Abstr. 2011, 156, 99155
  • 25 Procedure for the Synthesis of 3-(3-Amino-2-chloropropylidene)-6-chloro-2-indolinone (4a) To a one-neck round-bottom flask equipped with magnetic stirring was added 6-chloro-2-indolinone (2a, 1.00 g, 6.0 mmol), vinamidinium salt 3 24 (2.02 g, 12.0 mmol), Et3N (1.82 g, 18.0 mmol), and DMF (10 mL). The mixture was stirred for 20 h at r.t., after the reaction was complete (monitored by TLC, EtOAc/MeOH = 20:1), 30 mL EtOAc and 30 mL water was added, then the aqueous layer was extracted with 30 mL EtOAc. The combined EtOAc layer was washed with sat. NaCl solution (15 mL) and water (15 mL) then dried over Na2SO4. After filtering the desiccant, the solvent was concentrated under vacuum to a volume of about 5 mL. The mixture was titrated with 15 mL n-hexane to give a yellow precipitant, the solid was filtered, and dried under vacuum to give 4a (1.34 g, yield 88%), a yellow powder, which was used in the next step without further purification; mp > 250 °C. 1H NMR (500 MHz, DMSO): δ = 10.34 (s, 1 H), 8.10 (d, J = 8.0 Hz, 1 H), 7.97 (s, 1 H), 7.75 (t, J = 11.0 Hz, 1 H), 7.44 (s, 2 H), 6.88 (d, J = 8.5 Hz, 1 H), 6.78 (s, 1 H). 13C NMR (125 MHz, DMSO): δ = 170.53, 151.17, 141.75, 138.14, 129.98, 125.26, 122.07, 120.20, 109.96, 109.14, 101.24. ESI-HRMS: m/z calcd for C11H9Cl2N2O+: 255.0086; found: 255.0078 [M + H]+.
  • 26 Deng X. Roessler A. Brdar I. Faessler R. Wu J. Sales ZS. Mani NS. J. Org. Chem. 2011; 76: 8262
  • 27 In a 25 mL three-necked flask compound 4a (1.28 g, 5.0 mmol) and 25 mL 1,4-dioxane were added, and POCl3 (1.53 g, 10.0 mmol) was added to the mixture dropwise at 0 °C under continuous stirring. The reaction mixture was stirred for 2 h at r.t. then heated at reflux for 20 h. After the reaction was complete (monitored by TLC, PE/EtOAc = 3:1), the solvent and POCl3 were evaporated under vacuum, then 60 mL EtOAc was added. The organic phase was successively washed with water (25 mL), 8% aq NaHCO3 (25 mL) and water (25 mL), then dried with Na2SO4 and evaporated under vacuum to yield a brown solid which on flash chromatography (SiO2, EtOAc/hexane = 1:6) elution yielded 3,7-dichloro-α-carboline (1a, 1.08 g, 93%) as a yellow solid; mp >250 °C. 1H NMR (500 MHz, DMSO): δ = 12.27 (s, 1 H), 8.72 (s, 1 H), 8.43 (s, 1 H), 8.23 (d, J = 8.5 Hz, 1 H), 7.54 (s, 1 H), 7.27 (d, J = 8.5 Hz, 1 H). 13C NMR (125 MHz, DMSO): δ = 150.81, 144.91, 140.72, 132.21, 128.72, 123.71, 122.68, 120.53, 118,89, 116.28, 111.60. ESI-HRMS: m/z calcd for C11H7Cl2N2 +: 236.9981; found: 236.9973 [M + H]+.