Synlett 2018; 29(08): 1024-1027
DOI: 10.1055/s-0037-1609302
letter
© Georg Thieme Verlag Stuttgart · New York

A Synthesis of Spirocyclic Oxazinoisoquinolines and Oxazinoquinolines Bearing Thiazolopyrimidine Moieties

Issa Yavari*
a   Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran   Email: yavarisa@modares.ac.ir
,
Mahniya Hojati
a   Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran   Email: yavarisa@modares.ac.ir
,
Leila Azad
b   Department of Chemistry, Islamic Azad University, Khodabandeh Branch, Khodabandeh, Zanjan, Iran
,
Mohammad R. Halvagar
c   Department of Inorganic Chemistry, Chemistry and Chemical Engineering Research Center of Iran, PO Box 14335-186, Tehran, Iran
› Author Affiliations
Further Information

Publication History

Received: 15 October 2017

Accepted after revision: 16 January 2018

Publication Date:
07 March 2018 (online)


Abstract

The reaction of isoquinoline or quinoline with dialkyl acetylenedicarboxylates in the presence of alkyl 2-{3,5-dioxo-5H-thiazolo[3,2-a]pyrimidin-2(3H)-ylidene}acetates (generated in situ from acetylenedicarboxylates and 2-thiouracils) led to dialkyl 2-(2-alkoxy-2-oxoethylidene)-5-oxo-2H,5H,11b′H-spiro{thiazolo[3,2-a]pyrimidine-3,2′-[1,3]oxazino[2,3-a]isoquinoline}-3′,4′-dicarboxylates or dialkyl 2-(2-alkoxy-2-oxoethylidene)-5-oxo-2H,4a′H,5H-spiro{thiazolo[3,2-a]pyrimidine-3,2′-[1,3]oxazino[3,2-a]quinoline}-1′,2′-dicarboxylates in good yields. The structure of the target compounds was confirmed by X-ray diffraction study.

Supporting Information

 
  • References and Notes

  • 1 Eliel EL. Wilen SH. Mander LN. Stereochemistry of Organic Compounds . Wiley; New York, NY: 1994: 1119
  • 2 Rios R. Chem. Soc. Rev. 2012; 41: 1060
  • 3 Marson CM. Chem. Soc. Rev. 2011; 40: 5514
  • 4 Franz AK. Hanhan NV. Ball-Jones NR. ACS Catal. 2013; 3: 540
  • 5 Müller G. Berkenbosch T. Benningshof JC. J. Stumpfe D. Bajorath J. Chem. Eur. J. 2017; 23: 703
  • 6 Carreira EM. Fessard TC. Chem. Rev. 2014; 114: 8257
  • 7 Zheng Y. Tice CM. Singh SB. Bioorg. Med. Chem. Lett. 2014; 24: 3673
  • 8 Smith LK. Baxendale IR. Org. Biomol. Chem. 2015; 13: 9907
  • 9 Nair V. Menon RS. Sreekanth A. Abhilash N. Biju AT. Acc. Chem. Res. 2006; 39: 520
  • 10 Nair V. Deepthi A. Ashok D. Raveendran AE. Paul RR. Tetrahedron 2014; 70: 3085
  • 11 Ruijter E. Scheffelaar R. Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
  • 12 Yavari I. Hossaini Z. Sabbaghan M. Ghazanfarpour-Darjani M. Monatsh. Chem. 2007; 138: 677
  • 13 Yavari I. Karimi E. Tetrahedron Lett. 2008; 49: 6433
  • 14 Yavari I. Mirzaei A. Moradi L. Khalili G. Tetrahedron Lett. 2010; 51: 396
  • 15 Yavari I. Khalili G. Mirzaei A. Tetrahedron Lett. 2010; 51: 1190
  • 16 General Procedure for the Preparation of Compounds 4 and 6 To a stirred solution of 2 (2 mmol) and 3 (1 mmol) in toluene (10 mL) at reflux was added dropwise a solution of isoquinoline or quinoline (0.286 g, 1 mmol) in toluene (4 mL). After completion of the reaction as evidenced by TLC, the solvent was evaporated and the residue was recrystallized from AcOEt/n-hexane (1:3) to afford the pure product. Dimethyl 2-(2-Methoxy-2-oxoethylidene)-5-oxo-2H,5H,11b′H-spiro[thiazolo[3,2-a]pyrimidine-3,2′-[1,3]oxazino[2,3-a]isoquinoline]-3′,4′-dicarboxylate (4a) Yellow crystals; mp 88–90 °C; yield 0.43 g (85%). IR (KBr): νmax = 1748 (C=O), 1711 (C=O), 1628 (C=O) cm–1. 1H NMR: δ = 3.63 (3 H, s, MeO), 3.77 (3 H, s, MeO), 3.96 (3 H, s, MeO), 5.95 (1 H, d, 3J = 7.8 Hz, CH), 6.13 (1 H, s, CH), 6.25 (1 H, d, 3 J = 6.5 Hz, CH), 6.45 (1 H, d, 3 J = 7.7 Hz, CH), 7.16 (1 H, d, 3 J = 7.6 Hz, CH), 7.30 (1 H, d, 3 J = 7.6 Hz, CH), 7.34–742 (2 H, m, CH), 7.51 (1 H, s, CH), 7.84 (1 H, d, 3 J = 6.5 Hz, CH). 13C NMR (125.7 MHz, CDCl3): δ = 52.5 (MeO), 52.6 (MeO), 54.1 (MeO), 83.3 (CH), 95.9 (C), 107.0 (CH), 108.9 (C), 112.4 (CH), 113.1 (CH), 123.5 (CH), 125.8 (C), 126.0 (CH), 128.0 (CH), 128.5 (CH), 129.4 (C), 130.4 (CH), 146.1 (C), 153.9 (CH), 154.3 (C), 161.4, 162.8, 162.9, 163.2, 166.7 (5 C, C=O and C=N). MS (EI, 70 eV): m/z (%) = 509 (15) [M+], 386 (27), 321 (100), 294 (20), 281 (17), 254 (50), 226 (36), 129 (80). Anal. Calcd for C24H19N3O8S (509.49): C, 56.58; H, 3.76; N, 8.25%. Found: C, 56.42; H, 3.78; N, 8.27%. Dimethyl 2-(2-Methoxy-2-oxoethylidene)-5-oxo-2H,4a′H,5H-spiro{thiazolo[3,2-a]pyrimidine-3,3′-[1,3]oxazino[3,2-a]quinoline}-1′,2′-dicarboxylate (6a) Yellow crystals; mp 75–77 °C; yield 0.44 g (87%). IR (KBr): νmax = 1735 (C=O), 1717 (C=O), 1689 (C=O) cm–1. 1H NMR (500.1 MHz, CDCl3): δ = 3.65 (3 H, s, MeO), 3.70 (3 H, s, MeO), 3.92 (3 H, s, MeO), 5.99 (1 H, s, CH), 5.99 (1 H, dd, 3 J = 9.9, 4.3 Hz, CH), 6.22 (1 H, d, 3 J = 6.7 Hz, CH), 6.80 (1 H, d, 3 J = 4.3 Hz, CH), 6.89 (1 H, d, 3 J = 9.8 Hz, CH), 6.99 (1 H, d, 3 J = 8.1 Hz, CH), 7.09 (1 H, t, 3 J = 7.4 Hz, CH), 7.28 (1 H, d, 3 J = 8.1 Hz, CH), 7.33 (1 H, t, 3 J = 7.4 Hz, CH), 7.80 (1 H, d, 3 J = 6.7 Hz, CH). 13C NMR (125.7 MHz, CDCl3): δ = 52.5 (MeO), 52.6 (MeO), 54.1 (MeO), 83.3 (CH), 95.9 (C), 107.0 (CH), 108.9 (C), 112.4 (CH), 113.1 (CH), 123.5 (CH), 125.8 (C), 126.0 (CH), 128.0 (CH), 128.5 (CH), 129.4 (C), 130.4 (CH), 146.1 (C), 153.9 (CH), 154.3 (C), 161.4, 162.8, 162.9, 163.2, 166.7 (5 C, C=O and C=N). MS (EI, 70 eV): m/z (%) = 509 (15) [M+], 386 (27), 321 (100), 294 (20), 281 (17), 254 (50), 226 (36), 129 (80). Anal. Calcd for C24H19N3O8S (509.49): C, 56.58; H, 3.76; N, 8.25%. Found: C, 56.37; H, 3.75; N, 8.22%.
  • 17 X-ray Crystal-Structure Determination of 4b and 6d The X-ray diffraction measurements were carried out on a STOE IPDS 2T diffractometer with graphite-monochromated Mo Kα radiation. All single crystals were obtained from AcOEt/n-hexane solutions and mounted on a glass fiber for data collection. Cell constants and orientation matrixes for data collection were obtained by least-square refinement of the diffraction data from 7475 and 5215 for 4b and 6d, respectively. Diffraction data were collected in a series of ω scans in 1° oscillations and integrated using the STOE X-AREA software package (see ref.22). Multi-Scan absorption corrections were applied using WinGX-2013.3 software. The structures were solved by direct methods and subsequent difference Fourier maps and then refined on F2 by a full-matrix least-squares procedure using anisotropic displacement parameters. Atomic factors are from the International Tables for X-ray Crystallography. All nonhydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. All refinements were performed using the X-STEP32, SHELXL-2014, and WinGX-2013.3 programs (see ref.23).
  • 18 CCDC-1541004 and CCDC-1541008 contain the supplementary crystallographic data for 4b and 6d, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 19 Huisgen R. Morikawa M. Herbig K. Brunn E. Chem. Ber. 1967; 100: 1094
  • 20 Winterfeldt E. Schumann D. Dillinger HJ. Chem. Ber. 1969; 102: 1656
  • 21 Dillinger HJ. Fengler G. Schumann D. Winterfeldt E. Tetrahedron 1974; 30: 2553
  • 22 X-AREA: Program for the Acquisition and Analysis of Data, Version 1.30; Stoe and Cie GmbH: Darmstadt, 2005

    • For details, see:
    • 23a Farrugia LJ. J. Appl. Crystallogr. 1999; 32: 837
    • 23b Allen FH. Johnson O. Shields GP. Smith BR. Towler M. J. Appl. Crystallogr. 2004; 37: 335
    • 23c Macrae CF. Edgington PR. McCabe P. Pidcock E. Shields GP. Taylor R. Towler M. van der Streek J. J. Appl. Crystallogr. 2006; 39: 453
    • 23d Burnett MN. Johnson CK. ORTEP-III Report ORNL-6895 . Oak Ridge National Laboratory; Tennessee: 1996
    • 23e Spek AL. J. Appl. Crystallogr. 2003; 36: 7
    • 23f Sheldrick GM. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008; 64: 112
    • 23g Coppens P. Leiserowitz L. Rabinovich D. Acta Crystallogr. 1965; 18: 1035